摘要:
A data storage device encrypts data stored in non-volatile memory using a bulk encryption key. The data storage device uses a key derivation function to generate an initial encryption key. The data storage device then wraps an intermediate encryption key with the initial encryption key and stores the wrapped intermediate key in the non-volatile memory. The data storage device wraps the bulk encryption key with the intermediate encryption key and stores the wrapped bulk encryption key in the non-volatile memory. The data storage device can unwrap the wrapped intermediate key to generate the intermediate encryption key using the initial encryption key. The data storage device can unwrap the wrapped bulk encryption key to generate the bulk encryption key using the intermediate encryption key. The data storage device decrypts data stored in the non-volatile memory using the bulk encryption key.
摘要:
A verifiable security mode is provided for securing data on a storage device, such as a hard disk drive. When the verifiable security mode is enabled, only authenticated accesses to data stored on the storage device are permitted after entering a password. An end user is prevented from disabling the verifiable security mode. The verifiable security mode can be set to allow or disallow an administrator from disabling the verifiable security mode. The verifiable security mode can be implemented, for example, in firmware on a hard disk drive (HDD).
摘要:
A hard disk drive enhances random number generation. In particular embodiments, the hard disk drive includes a controller, a hard disk, and a head. The head includes a read sensor for reading patterns on the hard disk. The controller generates a random number based on information associated with the position of the head relative to at least one track of the hard disk.
摘要:
A data storage device encrypts data stored in non-volatile memory using a bulk encryption key. The data storage device uses a key derivation function to generate an initial encryption key. The data storage device then wraps an intermediate encryption key with the initial encryption key and stores the wrapped intermediate key in the non-volatile memory. The data storage device wraps the bulk encryption key with the intermediate encryption key and stores the wrapped bulk encryption key in the non-volatile memory. The data storage device can unwrap the wrapped intermediate key to generate the intermediate encryption key using the initial encryption key. The data storage device can unwrap the wrapped bulk encryption key to generate the bulk encryption key using the intermediate encryption key. The data storage device decrypts data stored in the non-volatile memory using the bulk encryption key.
摘要:
A verifiable security mode is provided for securing data on a storage device, such as a hard disk drive. When the verifiable security mode is enabled, only authenticated accesses to data stored on the storage device are permitted after entering a password. An end user is prevented from disabling the verifiable security mode. The verifiable security mode can be set to allow or disallow an administrator from disabling the verifiable security mode. The verifiable security mode can be implemented, for example, in firmware on a hard disk drive (HDD).
摘要:
A method is described for allowing disk drives, such as shingle-written magnetic recording (SMR) drives, to be shipped for customer use with portions of the magnetic media being left untested. The testing is then completed by the drive self-testing in the field. The drive is made functional at the factory by fully testing at least one operational set of regions including an I-region, an E-region and a write cache region. The operational set of regions works as a separate self-contained virtual disk drive and can be used immediately. The remaining untested areas on the media can be tested in the field by a background task and/or when the first write command is received that requires a new track or operational set of regions (on-the fly testing).
摘要:
A method is described for allowing disk drives, such as shingle-written magnetic recording (SMR) drives, to be shipped for customer use with portions of the magnetic media being left untested. The testing is then completed by the drive self-testing in the field. The drive is made functional at the factory by fully testing at least one operational set of regions including an I-region, an E-region and a write cache region. The operational set of regions works as a separate self-contained virtual disk drive and can be used immediately. The remaining untested areas on the media can be tested in the field by a background task and/or when the first write command is received that requires a new track or operational set of regions (on-the fly testing).
摘要:
A data storage apparatus includes a data storage medium, a write element, a non-volatile cache memory circuit, and a controller circuit. The controller circuit is configured to record data on the data storage medium in groups of overlapping tracks using the write element. The controller circuit is configured to store a shingle block of data from a subset of the overlapping tracks in the non-volatile cache memory circuit, while at least a portion of the data in the shingle block of data is updated.
摘要:
A data storage apparatus includes a data storage medium, a write element, a non-volatile cache memory circuit, and a controller circuit. The controller circuit is configured to record data on the data storage medium in groups of overlapping tracks using the write element. The controller circuit is configured to store a shingle block of data from a subset of the overlapping tracks in the non-volatile cache memory circuit, while at least a portion of the data in the shingle block of data is updated.
摘要:
Patterned-media magnetic recording disks are made from a master template that has nondata regions that contain a pattern of one or more discrete nondata islands and discrete gaps, with the pattern representing a scrambled number. All disks made from the master template, or from replica molds made from the master, will have the same patterns. When the disks are DC-magnetized so that all the nondata islands are magnetized in the same direction, these patterns will include one or more of discrete magnetized nondata islands and discrete nonmagnetic gaps that are scrambled in a pseudo-random manner. During operation of the disk drive the patterns are detected by the read head and interpreted within the disk drive using knowledge of the pseudo-random scrambling function, so that reading and writing of data can occur in the conventional manner. If the disks are copied in an attempt to replicate the master template, the resulting disks will be inoperable in a disk drive because of the scrambling.