Abstract:
This invention relates to the use of ionic liquids as lubricants in vapor compression systems for cooling or heating. This invention also relates to an apparatus for adjusting temperature that operates a vapor compression cycle.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about 25% to about 70% by volume of a biopolymer polymeric carrier, about 5% to 75% percent by volume of organic and inorganic extreme pressure additives, about 0% to 20% by volume synthetic extreme pressure anti-wear liquid oil, and about 0% to 1% by volume optical brightener.
Abstract:
The invention relates to a method for preparing metal workpieces for cold forming by first applying a phosphate layer and then applying a lubricant layer which has a major content in organic polymer material. The phosphate layer is formed by an aqueous acidic phosphating solution having a major content in calcium, magnesium or manganese and phosphate. The lubricant layer is formed by contacting the phosphated surface with an aqueous lubricant composition which has a content in organic polymer material based on ionomer and optionally also non-ionomer the organic polymer material used predominantly being monomers, oligomers, co-oligomers, polymers or copolymers based on ionomer, acrylic acid/methacrylic acid, epoxide, ethylene, polyamide, propylene, styrene, urethane, the ester or salt thereof. The invention also relates to the corresponding lubricant composition, to the lubricant layer produced thereof and to its use.
Abstract:
Particles each of which consists of an inorganic polyvalent metal compound as a nucleus and a coating of a metallic soap of the polyvalent metal coating the nucleus (coated particles); products and preparation processes using the particles; a lubricating coating forming agent wherein particles each of which consists of a polyvalent metal salt of phosphoric acid as a nucleus and a coating of a metallic soap of the polyvalent metal coating the surface of the nucleus are suspended in an aqueous solution of a water soluble inorganic salt and/or a water soluble organic acid salt; and a lubricating coating. The coated particles are novel particles which can be used as an ingredient of coating-type lubricating coating; are excellent in seizure resistance; can inhibit wear of tools at the time of plastic working since the friction coefficient of the surface of the particles is low; and are slow to cause pollution of working oils. Lubricating coating obtained by applying the lubricating coating forming agent onto the surface of a metallic material gives excellent cold plastic working properties, namely lubricity and seizure resistance to the metallic material.
Abstract:
The present invention provides compositions and products, such as waxes and lubricants, comprising a plurality of nanoparticles dispersed in a continuous phase comprising a vegetable oil derived material, such as one or more vegetable oils or a synthetic product derived from one or more vegetable oils. Incorporation of nanoparticles in the present compositions is beneficial for providing mechanical, thermal and/or chemical properties useful for a selected product or product application. In some compositions of the present invention, for example, incorporation of the nanoparticle component provides compositions derived from one or more vegetable oils exhibiting enhanced mechanical stability, hardness, viscosity, thermal stability and mechanical strength.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A method for treatment of bacterial infections with rifalazil administered once-weekly, or twice-weekly. A method for treatment of tuberculosis caused by Mycobacterium tuberculosis, infections caused by Mycobacterium avium complex, infections caused by Chlamydia pneumoniae and infections caused by Helicobacter pylori by administering to a patient suffering from the bacterial infection 1-100 mg of rifalazil once or twice a week. In this dose regimen, the treatment is fast, efficacious and eliminates undesirable secondary symptoms observed with daily doses of 1-50 mg of rifalazil.