摘要:
A signal processing platform (300) presents (101) a signal to be processed and identifies (102) signal portions with specific characteristics that are used (103) to automatically determine at least one bounding frequency that can be used to facilitate bandwidth extension for the signal. Identifying these signal portions can comprise identifying signal portions that exhibit at least a predetermined level of energy. The step of determining the bounding frequency can comprise computing a magnitude spectrum for each of the identified signal portions that can be used to determine a corresponding measure of flatness within a pass band as pertains to a corresponding normalized signal portion to thereby provide corresponding vetted signal portions. Determining the bounding frequency can then comprise accumulating the magnitude spectrum for these vetted signal portions and using the resultant accumulation to estimate a corresponding signal envelope. This signal envelope can then be used to determine the at least one bounding frequency.
摘要:
A method (100) includes receiving (101) an input digital audio signal comprising a narrow-band signal. The input digital audio signal is processed (102) to generate a processed digital audio signal. An estimate of the high-band energy level corresponding to the input digital audio signal is determined (103). Modification of the estimated high-band energy level is done based on an estimation accuracy and/or narrow-band signal characteristics (104). A high-band digital audio signal is generated based on the modified estimate of the high-band energy level and an estimated high-band spectrum corresponding to the modified estimate of the high-band energy level (105).
摘要:
One provides (101) a digital audio signal having a corresponding signal bandwidth, and then provides (102) an energy value that corresponds to at least an estimate of out-of-signal bandwidth energy as corresponds to that digital audio signal. One then uses (103) the energy value to simultaneously determine both a spectral envelope shape and a corresponding suitable energy for the spectral envelope shape for out-of-signal bandwidth content as corresponds to the digital audio signal. By one approach, if desired, one then combines (104) (on, for example, a frame by frame basis) the digital audio signal with the out-of-signal bandwidth content to provide a bandwidth extended version of the digital audio signal to be audibly rendered to thereby improve corresponding audio quality of the digital audio signal as so rendered.
摘要:
A system or method for modeling a signal, such as a speech signal, in which harmonic frequencies and amplitudes are identified and the harmonic magnitudes are interpolated to obtain spectral magnitudes at a set of fixed frequencies. An inverse transform is applied to the spectral magnitudes to obtain a pseudo auto-correlation sequence, from which linear prediction coefficients are calculated. From the linear prediction coefficients, model harmonic magnitudes are generated by sampling the spectral envelope defined by the linear prediction coefficients. A set of scale factors are then calculated as the ratio of the harmonic magnitudes to the model harmonic magnitudes and interpolated to obtain a second set of scale factors at the set of fixed frequencies. The spectral envelope magnitudes at the set of fixed frequencies are multiplied by the second set of scale factors to obtain new spectral magnitudes and the process is iterated to obtain final linear prediction coefficients. The signal is modeled by the linear prediction coefficients.
摘要:
In a distributed speech recognition system comprising a first communication device which receives a speech input (34), encodes data representative of the speech input, and transmits the encoded data and a second remotely-located communication device which receives the encoded data and compares the encoded data with a known data set, the device including a processor with a program which controls the processor to operate according to a method of reconstructing the speech input including the step of receiving encoded data including encoded spectral data and encoded energy data. The method further includes the step of decoding the encoded spectral data and encoded energy data to determine the spectral data and energy data. The method also includes the step of combining the spectral data and energy data to reconstruct the speech input.
摘要:
A method (100) includes receiving (101) an input digital audio signal comprising a narrow-band signal. The input digital audio signal is processed (102) to generate a processed digital audio signal. An estimate of the high-band energy level corresponding to the input digital audio signal is determined (103). Modification of the estimated high-band energy level is done based on an estimation accuracy and/or narrow-band signal characteristics (104). A high-band digital audio signal is generated based on the modified estimate of the high-band energy level and an estimated high-band spectrum corresponding to the modified estimate of the high-band energy level (105).
摘要:
A method (100) includes receiving (101) an input digital audio signal comprising a narrow-band signal. The input digital audio signal is processed (102) to generate a processed digital audio signal. An estimate of the high-band energy level corresponding to the input digital audio signal is determined (103). Modification of the estimated high-band energy level is done based on an estimation accuracy and/or narrow-band signal characteristics (104). A high-band digital audio signal is generated based on the modified estimate of the high-band energy level and an estimated high-band spectrum corresponding to the modified estimate of the high-band energy level (105).
摘要:
A signal processing platform (300) presents (101) a signal to be processed and identifies (102) signal portions with specific characteristics that are used (103) to automatically determine at least one bounding frequency that can be used to facilitate bandwidth extension for the signal. Identifying these signal portions can comprise identifying signal portions that exhibit at least a predetermined level of energy. The step of determining the bounding frequency can comprise computing a magnitude spectrum for each of the identified signal portions that can be used to determine a corresponding measure of flatness within a pass band as pertains to a corresponding normalized signal portion to thereby provide corresponding vetted signal portions. Determining the bounding frequency can then comprise accumulating the magnitude spectrum for these vetted signal portions and using the resultant accumulation to estimate a corresponding signal envelope. This signal envelope can then be used to determine the at least one bounding frequency.
摘要:
A method (100) includes receiving (101) an input digital audio signal comprising a narrow-band signal. The input digital audio signal is processed (102) to generate a processed digital audio signal. A high-band energy level corresponding to the input digital audio signal is estimated (103) based on a transition-band of the processed digital audio signal within a predetermined upper frequency range of a narrow-band bandwidth. A high-band digital audio signal is generated (104) based on the high-band energy level and an estimated high-band spectrum corresponding to the high-band energy level.
摘要:
A method (100) includes receiving (101) an input digital audio signal comprising a narrow-band signal. The input digital audio signal is processed (102) to generate a processed digital audio signal. An estimate of the high-band energy level corresponding to the input digital audio signal is determined (103). Modification of the estimated high-band energy level is done based on an estimation accuracy and/or narrow-band signal characteristics (104). A high-band digital audio signal is generated based on the modified estimate of the high-band energy level and an estimated high-band spectrum corresponding to the modified estimate of the high-band energy level (105).