摘要:
The technology described here enables the use of an inexpensive laser to measure an interferometric response of an optical device under test (DUT) at reflection lengths significantly greater than the coherence length of the laser. This is particularly beneficial in practical interferometric applications where cost is a concern. In other words, inexpensive lasers having shorter coherence lengths may be used to achieve very high interferometric measurements at longer DUT reflection lengths. The technology also enables the use of such inexpensive lasers to measure Rayleigh scatter in commercial-grade, single-mode optical fiber.
摘要:
Various embodiments of sensors are described that exhibit several spectral features that together offer coverage of a wavelength range corresponding to the desired strain dynamic range (or temperature range) of a system. The spectral features arise from a Fabry-Perot interferometer formed by two overlapping chirped FBGs, the free-spectral range (FSR) of which varies with wavelength. The spectral features may be differentiated due to a combination of spacing and slope of the overlapped, chirped gratings.
摘要:
Multi-spectral feature sensing techniques and sensor and related digital signal processing circuitry and methods. A method of operating a digital signal processing circuitry includes acquiring optical frequency domain reflectometry (OFDR) data from an interferometer operably coupled to a tunable laser and a sensing fiber, separating sensor signals corresponding to sensors of the sensing fiber from the OFDR data, and inferring a relative shift of a separated sensor signal. A digital signal processing circuitry includes a front end circuitry and a back end circuitry. The front end circuitry is configured to isolate sensor responses from an input signal including OFDR data. The back end circuitry is configured to determine a phase shift corresponding to each isolated sensor response.
摘要:
Multi-spectral feature sensing techniques and sensor and related digital signal processing circuitry and methods. A method of operating a digital signal processing circuitry includes acquiring optical frequency domain reflectometry (OFDR) data from an interferometer operably coupled to a tunable laser and a sensing fiber, separating sensor signals corresponding to sensors of the sensing fiber from the OFDR data, and inferring a relative shift of a separated sensor signal. A digital signal processing circuitry includes a front end circuitry and a back end circuitry. The front end circuitry is configured to isolate sensor responses from an input signal including OFDR data. The back end circuitry is configured to determine a phase shift corresponding to each isolated sensor response.
摘要:
The various embodiments described here comprise an OFDR system and technique that may be used for inference of strain or temperature over a large dynamic range using a narrow wavelength range. Embodiments of the sensor fiber may be composed of one or more multi-spectral-feature sensors, each sensor exhibiting several spectral features that together offer coverage over a wavelength range corresponding to the desired system strain and or temperature dynamic range.
摘要:
A tunable laser wavelength measurement system includes an interferometric wavelength tracking system that uses a combination of interferometric and wavelength reference measurements to directly measure the laser output wavelength, The measurement exhibits the following desirable error signal characteristics: directional information, continuity, low latency, absolute information, high accuracy, high precision, and little or no drift, A tunable laser wavelength control system additionally incorporates electronics to compare the measured laser wavelength to a desired wavelength or wavelength function, and to generate a feedback control signal to control the wavelength of the laser output based on the comparison. In one non-limiting example implementation, the desired wavelength function is repetitive. The difference between the desired wavelength function and the interferometrically-measured wavelength function is taken, and a successive approximation technique is employed to calculate and adjust a repetitive controlling signal to obtain the desired wavelength function.
摘要:
Various embodiments of sensors are described that exhibit several spectral features that together offer coverage of a wavelength range corresponding to the desired strain dynamic range (or temperature range) of a system. The spectral features arise from a Fabry-Perot interferometer formed by two overlapping chirped FBGs, the free-spectral range (FSR) of which varies with wavelength. The spectral features may be differentiated due to a combination of spacing and slope of the overlapped, chirped gratings.
摘要:
The various embodiments described here comprise an OFDR system and technique that may be used for inference of strain or temperature over a large dynamic range using a narrow wavelength range. Embodiments of the sensor fiber may be composed of one or more multi-spectral-feature sensors, each sensor exhibiting several spectral features that together offer coverage over a wavelength range corresponding to the desired system strain and or temperature dynamic range.
摘要:
A tunable laser wavelength measurement system includes an interferometric wavelength tracking system that uses a combination of interferometric and wavelength reference measurements to directly measure the laser output wavelength, The measurement exhibits the following desirable error signal characteristics: directional information, continuity, low latency, absolute information, high accuracy, high precision, and little or no drift, A tunable laser wavelength control system additionally incorporates electronics to compare the measured laser wavelength to a desired wavelength or wavelength function, and to generate a feedback control signal to control the wavelength of the laser output based on the comparison. In one non-limiting example implementation, the desired wavelength function is repetitive. The difference between the desired wavelength function and the interferometrically-measured wavelength function is taken, and a successive approximation technique is employed to calculate and adjust a repetitive controlling signal to obtain the desired wavelength function.