摘要:
A receiver receives chip-level data items via a plurality of individual distinct path signals in a signal cluster that is wirelessly received. Channel estimates and timing reference signals, and lock indications of valid components values in the channel estimates are generated utilizing the received chip-level data items. Rake receiver fingers are assigned to the received individual distinct path signals based on the generated channel estimates and timing reference signals, and/or the lock indications. Each of the received chip-level data items corresponds to one of the assigned rake receiver fingers. At least a portion of the received chip-level data items may be combined utilizing the assigned rake receiver fingers. The generated one or more combined chip-level data items may be despreaded to generate corresponding symbol-level data.
摘要:
In a RF communications system, aspects for implementing a single weight single channel MIMO system with no insertion loss may comprise generating at least one control signal that is utilized to control at least one of a plurality of received signals in a WCDMA and/or HSDPA system. A phase of a first of the plurality of received signals may be adjusted outside of a first processing path used to process that signal so that it is equivalent to a phase of at least a second of the plurality of received signals. A gain in the first processing path may be equivalent to a gain in a second processing path that is utilized to process the second of the plurality of received signals. The control signal may be utilized to adjust a phase and/or an amplitude of at least one of a plurality of received signals.
摘要:
In a RF communications system, aspects for single weight antenna system for HSDPA may comprise receiving HSDPA signals via a plurality of receive antennas and individually adjusting a phase of a portion of the received HSDPA signals via a single weight. The phase adjusted portion of the received HSDPA signals may be combined with at least one of the received HSDPA signals to generate combined HSDPA signals. At least one control signal may control the adjusting of the phase of the received HSDPA signals. Discrete phases may be communicated to adjust the phase of the portion of the received HSDPA signals, where the plurality of the discrete phases may range from zero radians to substantially 2π radians. Phase shift channel estimates may be generated during the identified time to determine the discrete phase. A desired phase may be generated from the phase shift channel estimates, and the single weight may be generated from the desired phase.
摘要:
In a RF communications system, aspects for single weight antenna system for HSDPA may comprise receiving HSDPA signals via a plurality of receive antennas and individually adjusting a phase of a portion of the received HSDPA signals via a single weight. The phase adjusted portion of the received HSDPA signals may be combined with at least one of the received HSDPA signals to generate combined HSDPA signals. At least one control signal may control the adjusting of the phase of the received HSDPA signals. Discrete phases may be communicated to adjust the phase of the portion of the received HSDPA signals, where the plurality of the discrete phases may range from zero radians to substantially 2π radians. Phase shift channel estimates may be generated during the identified time to determine the discrete phase. A desired phase may be generated from the phase shift channel estimates, and the single weight may be generated from the desired phase.
摘要:
Aspects of a method and system for a single antenna receiver system for HSDPA are provided. Aspects of a method for processing RF signals, the method may comprise computing channel estimates based on a plurality of received individual distinct path signals, generating timing reference signals indicating a location of at least one of the plurality of received individual distinct path signals, combining at least a portion of the plurality of received individual distinct path signals as a signal cluster based on at least one of the computed channel estimates and said generated timing reference signals, and selecting at least one of combining and equalization processing based on at least one of the computed channel estimates and the generated timing reference signals. Aspects of a system for processing RF signals may comprise circuitry that selects at least one of combining and equalization processing based the computed channel estimates and/or generated timing reference signals.
摘要:
Certain aspects of the method may comprise generating at least one control signal that may be utilized to control at least a first of a plurality of received spatially multiplexed communication signals. An amplitude and/or phase of the first received spatially multiplexed communication signal may be adjusted via the generated control signal so that the amplitude and/or phase of the first received spatially multiplexed communication signal may be equivalent to an amplitude and/or phase of a second received spatially multiplexed communication signal. The amplitude of the first received spatially multiplexed communication signal is adjusted within the processing path used to process the first received spatially multiplexed communication signal.
摘要:
Aspects of a method and system for channel estimation in a SM MIMO communication system may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas. A plurality of baseband combined channel estimates based on phase rotation may be generated in response to the received plurality of spatially multiplexed communication signals. An estimate of the channel matrix may be determined based on the baseband combined channel estimates. A plurality of amplitude and phase correction signals may be generated in response to receiving the estimate of the channel matrix. An amplitude and a phase of at least a portion of the received plurality of spatially multiplexed communication signals may be adjusted based on the generated plurality of amplitude and phase correction signals, respectively.
摘要:
In a RF communications system, aspects for implementing a single weight single channel MIMO system with no insertion loss may comprise generating at least one control signal that is utilized to control at least one of a plurality of received signals in a WCDMA and/or HSDPA system. A phase of a first of the plurality of received signals may be adjusted outside of a first processing path used to process that signal so that it is equivalent to a phase of at least a second of the plurality of received signals. A gain in the first processing path may be equivalent to a gain in a second processing path that is utilized to process the second of the plurality of received signals. The control signal may be utilized to adjust a phase and/or an amplitude of at least one of a plurality of received signals.
摘要:
Certain aspects of the method may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas at a base station. A plurality of vectors of baseband combined channel estimates may be generated based on phase rotation of the received plurality of spatially multiplexed communication signals. A plurality of pre-equalization weights may be generated based on the generated plurality of vectors of baseband combined channel estimates. The received plurality of spatially multiplexed communication signals may be modified based on the generated plurality of pre-equalization weights. At least a portion of the generated plurality of pre-equalization weights may be fed back to the base station for modifying subsequently transmitted spatially multiplexed communication signals which are transmitted from at least a portion of the plurality of transmit antennas at the base station.
摘要:
Aspects of a method and system for channel estimation in a SM MIMO communication system may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas. A plurality of baseband combined channel estimates based on phase rotation may be generated in response to the received plurality of spatially multiplexed communication signals. An estimate of the channel matrix may be determined based on the baseband combined channel estimates. A plurality of amplitude and phase correction signals may be generated in response to receiving the estimate of the channel matrix. An amplitude and a phase of at least a portion of the received plurality of spatially multiplexed communication signals may be adjusted based on the generated plurality of amplitude and phase correction signals, respectively.