Abstract:
A wind turbine blade having an aerodynamic profile (5) with a leading edge (11), a trailing edge (13) and suction and pressure sides (17, 19) between the leading edge (11) and the trailing edge (13) which has, on at least one part of the wind turbine blade, a Trailing Edge Region (TER), the transversal section of which increases in the direction of the trailing edge (13). Said trailing edge region (TER) preferably has a divergent form with a curved concave surface on its lower part.
Abstract:
The present invention relates to a method for controlling a wind turbine comprising a pitch of one or more blades and collecting first data indicative of a dynamic condition of the first wind turbine blade and a rotor, the first data comprising rotor data and first deflection data, the rotor data indicative of the azimuth position and rotational velocity of the rotor in a rotor plane perpendicular to the rotor axis, and the first deflection data indicative of the position, speed and acceleration of one or more parts of the first wind turbine blade. The method comprises calculating an expected tower clearance distance at a later time of tower passage for the first blade based on the first data including acceleration of one or more parts of the first blade, and performing measures to prevent tower collision, if the expected tower clearance distance fulfills a collision risk criterion.
Abstract:
The present invention relates to a method for controlling a wind turbine comprising a pitch of one or more blades and collecting first data indicative of a dynamic condition of the first wind turbine blade and a rotor, the first data comprising rotor data and first deflection data, the rotor data indicative of the azimuth position and rotational velocity of the rotor in a rotor plane perpendicular to the rotor axis, and the first deflection data indicative of the position, speed and acceleration of one or more parts of the first wind turbine blade. The method comprises calculating an expected tower clearance distance at a later time of tower passage for the first blade based on the first data including acceleration of one or more parts of the first blade, and performing measures to prevent tower collision, if the expected tower clearance distance fulfills a collision risk criterion.
Abstract:
A wind turbine blade having an aerodynamic profile (5) with a leading edge (11), a trailing edge (13) and suction and pressure sides (17, 19) between the leading edge (11) and the trailing edge (13) which has, on at least one part of the wind turbine blade, a Trailing Edge Region (TER), the transversal section of which increases in the direction of the trailing edge (13). Said trailing edge region (TER) preferably has a divergent form with a curved concave surface on its lower part.
Abstract:
The invention relates to an optimised wind turbine blade including: a first component (7) having an aerodynamic profile with a leading edge (11), a blunt trailing edge (13) with a thickness T greater than 2 mm and suction and pressure sides (17, 19) between the leading edge (11) and the blunt trailing edge (13); and a second component (9, 12) for reducing the noise from the blunt trailing edge, having a constant cross-section along the radius of the blade, which is securely joined to the blunt trailing edge (13) of the first component (7) in at least part of the wind turbine blade using coupling means that enable same to be replaced.
Abstract:
A method of in situ calibrating load sensors of a horizontal axis wind turbine is described. The method comprises the steps of: a) determining a rotor azimuth angle of a first wind turbine blade, b) determining a pitch angle of the first wind turbine blade, c) measuring loads in a first cross-section of the first wind turbine blade using the first load sensors, d) calculating theoretical loads based on at least the rotor azimuth angle and the pitch angle of the blade determined in steps a) and b), e) comparing the loads measured in step c) with the theoretical loads calculated in step d), and f) calibrating the first load sensors based on the comparison of step e), wherein the calibration are based only on measurements carried out, when the generator is cut out.
Abstract:
A method of in situ calibrating load sensors of a horizontal axis wind turbine is described. The method comprises the steps of: a) determining a rotor azimuth angle of a first wind turbine blade, b) determining a pitch angle of the first wind turbine blade, c) measuring loads in a first cross-section of the first wind turbine blade using the first load sensors, d) calculating theoretical loads based on at least the rotor azimuth angle and the pitch angle of the blade determined in steps a) and b), e) comparing the loads measured in step c) with the theoretical loads calculated in step d), and f) calibrating the first load sensors based on the comparison of step e), wherein the calibration are based only on measurements carried out, when the generator is cut out.