摘要:
Hub-mounted active vibration control (HAVC) devices, systems, and related methods are provided. An HAVC device (100) includes a housing (206) having a tolerance ring (600) attached to a rotary hub (702). The tolerance ring can accommodate dissimilar coefficients of thermal expansion between dissimilar metals. The HAVC device can also include a plurality of coaxial ring motors (308A, 308B, 310A, 310B) configured to rotate a plurality of imbalance masses for controlling vibration. An HAVC system can further include a de-icing distributor (208) for communicating instructions to one or more heating sources (HS) provided at one or more rotary blades (802) of a vehicle or aircraft. A method of controlling vibratory loads occurring at a moving platform can include providing a moving platform, mounting a vibration control device to a portion of the moving platform, and rotating at least one pair of imbalance masses such that the combined forces of the masses substantially cancel unwanted vibration of the platform.
摘要:
Systems, methods, and computer program products for directional force weighting of an active vibration control system involve arranging a plurality of force generators in an array, identifying individual component forces corresponding to force outputs of each of the plurality of force generators, determining a combination of the individual component forces that will produce a desired total force vector, and adjusting the outputs of each of the plurality of force generators such that the combination of the individual component forces are at least substantially similar to the desired force vector.
摘要:
The present subject matter relates to systems and methods for active vibration control system speed monitoring and control in which a speed protection monitor configured to receive index pulses as inputs to monitor the speed of one or more force generators. A rotary actuator control system can be connected in communication with the speed protection monitor and the one or more force generators, wherein the rotary actuator control system is configured to shut down or adjust the speed of the one or more force generators if the one or more force generators are determined to be operating at undesired speeds.
摘要:
Active vibration control systems (100) and methods are provided herein. Systems (100) are expandable and include a plurality of vibration control devices (110) and at least a first controller (102) digitally linked with a second controller (104) via an interface (108). The first and the second controllers exchange information for generation of a force control command (FCC) either the first or second controller. The FCC is then executed at a first vibration control device (110) of the plurality of vibration control devices (FG) for providing active vibration control within a vehicle. A method of providing vibration control in a vehicle includes providing a plurality of active vibration control devices (100) and providing at least a first controller (102) digitally linked with a second controller (104). The method further includes generating a FCC using information exchanged between the first and the second controllers. The method further includes sending the FCC to a first vibration control device (110) of the plurality of devices (FG).
摘要:
A rotary wing aircraft including a vehicle vibration control system. The vehicle vibration control system includes a rotary wing aircraft member sensor for outputting rotary wing aircraft member data correlating to the relative rotation of the rotating rotary wing hub member rotating relative to the body, at least a first nonrotating body vibration sensor, the at least first nonrotating body vibration sensor outputting at least first nonrotating body vibration sensor data correlating to vibrations, at least a first nonrotating body circular force generator, the at least a first nonrotating body circular force generator fixedly coupled with the nonrotating body, the at least first nonrotating body circular force generator controlled to produce a rotating force with a controllable rotating force magnitude and a controllable rotating force phase, the controllable rotating force magnitude controlled from a minimal force magnitude up to a maximum force magnitude, and with the controllable rotating force phase controlled in reference to the rotary wing aircraft member sensor data correlating to the relative rotation of the rotating rotary wing hub rotating relative to the nonrotating body wherein the vibration sensed by the at least first nonrotating body vibration sensor is reduced.
摘要:
Hub-mounted active vibration control (HAVC) devices, systems, and related methods are provided. An HAVC device (100) includes a housing (206) having a tolerance ring (600) attached to a rotary hub (702). The tolerance ring can accommodate dissimilar coefficients of thermal expansion between dissimilar metals. The HAVC device can also include a plurality of coaxial ring motors (308A, 308B, 310A, 310B) configured to rotate a plurality of imbalance masses for controlling vibration. An HAVC system can further include a de-icing distributor (208) for communicating instructions to one or more heating sources (HS) provided at one or more rotary blades (802) of a vehicle or aircraft. A method of controlling vibratory loads occurring at a moving platform can include providing a moving platform, mounting a vibration control device to a portion of the moving platform, and rotating at least one pair of imbalance masses such that the combined forces of the masses substantially cancel unwanted vibration of the platform.
摘要:
Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
摘要:
Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.