Abstract:
A pumping system configured to pump fluid from the ambient environment to a target reservoir, the pumping system including: a fluid pump configured to statically mount to a rotating surface, the pump configured to rotate about an axis of rotation; a pump reservoir statically coupled to the fluid pump and configured to fluidly couple to the target reservoir, the pump reservoir including a collection area defined along a portion of the pump reservoir radially outward of the axis of rotation; and a liquid separation member arranged along a portion of the collection area, the liquid separation member including a membrane configured to preferentially permit liquid flow therethrough.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
A vehicular damper device interposed between an engine and an output shaft and provided with a dual-mass flywheel includes: a first inertial body in the form of a disk connected to a crankshaft of said engine and rotatable about an axis of said crankshaft; a torsional damping portion interposed between said first inertial body and said output shaft; a second inertial body in the form of a disk rotatable about said axis and having a smaller outside diameter than said first inertial body, said second inertial body cooperating with said first inertial body to constitute said dual-mass flywheel; and an elastic member interposed between said first inertial body and said second inertial body and operatively connecting said first and second inertial bodies such that said elastic member is elastically deformable according to an amount of relative rotation of the first and second inertial bodies.
Abstract:
An object of the present invention is to provide a torsion damper excellent in dynamic damping effect even when a vibration frequency fluctuates. A craft damper (torsion damper) of the present invention includes a crankshaft (shaft member) to be input with a torsion vibration, a disc member coaxially attached to the crankshaft, a ring-shaped inertia mass body connected to an outer peripheral side of the disc member via a magneto-rheological elastomer member so as to be coaxial with the crankshaft, and an electromagnetic coil for applying a magnetic field to the magneto-rheological elastomer member.
Abstract:
Hub-mounted active vibration control (HAVC) devices, systems, and related methods are provided. An HAVC device (100) includes a housing (206) having a tolerance ring (600) attached to a rotary hub (702). The tolerance ring can accommodate dissimilar coefficients of thermal expansion between dissimilar metals. The HAVC device can also include a plurality of coaxial ring motors (308A, 308B, 310A, 310B) configured to rotate a plurality of imbalance masses for controlling vibration. An HAVC system can further include a de-icing distributor (208) for communicating instructions to one or more heating sources (HS) provided at one or more rotary blades (802) of a vehicle or aircraft. A method of controlling vibratory loads occurring at a moving platform can include providing a moving platform, mounting a vibration control device to a portion of the moving platform, and rotating at least one pair of imbalance masses such that the combined forces of the masses substantially cancel unwanted vibration of the platform.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
A tire inflation system including a drive mechanism having a rotational axis, a pump cavity positioned a radial distance away from the axis of rotation, and a force translator coupling the rotational axis to the pump cavity. The drive mechanism includes a cam comprising an arcuate bearing surface having a non-uniform curvature, the cam rotatable about the rotational axis, and an eccentric mass couple to the cam that offsets a center of mass of the drive mechanism from the rotational axis. The pump cavity is rotatably coupled to the cam, wherein the pump cavity includes an actuating element and a chamber. The force translator couples the arcuate bearing surface to the actuating element, wherein the force translator includes an axis having an arcuate position fixed to an arcuate position of the pump cavity.