Abstract:
A transceiver to communicate in a vehicle via a single twisted-pair Ethernet cable includes a transmitter and a receiver, an analog front end, an equalizer, and a controller. The transmitter transmits signals via the single twisted-pair Ethernet cable. The receiver receives signals via the single twisted-pair Ethernet cable. The analog front end receives a first signal received by the transceiver via the single twisted-pair Ethernet cable and outputs a second signal. The equalizer includes a notch filter to cancel electromagnetic interference from the second signal. The controller makes a frequency response of the equalizer independent of the electromagnetic interference by controlling tap values of the notch filter. The controller controls gain of one or more of the analog front end and the equalizer based on the frequency response of the equalizer.
Abstract:
Tools capable of improving the accuracy of decision feedback equalization (DFE) are described. The tools may adapt a DFE using a more-equal distribution of signals than those actually received. The tools may do so by disregarding, averaging, or weighting certain signals when adapting the DFE when those signals represent an unequal distribution of bit patterns. In one example, the tools detect and disregard some of the signals representing idle bit patterns that are received more often than other bit patterns. The tools may also or instead compensate for a bit pattern that is never or rarely received.
Abstract:
A transceiver to communicate in a vehicle via a single twisted-pair Ethernet cable includes a transmitter to transmit signals via the single twisted-pair Ethernet cable and a receiver to receive signals via the single twisted-pair Ethernet cable. The transceiver includes an equalizer, a signal-to-noise ratio estimator, and a controller. The equalizer includes a notch filter and a slicer. The equalizer receives an input signal received by the transceiver via the single twisted-pair Ethernet cable. The notch filter cancels electromagnetic interference from the input signal and to output a filtered signal. The slicer slices the filtered signal. The signal-to-noise ratio estimator estimates a signal-to-noise ratio based on an output of the slicer. The controller controls a rate of adapting the equalizer by controlling a rate of change of tap values of the notch filter based on the signal-to-noise ratio.
Abstract:
A transceiver includes an equalizer, an adaptation module, an error detector, and a controller. The equalizer receives an input signal via the single twisted-pair Ethernet cable, including outputs of an analog front end of the receiver and an echo canceller, to cancel electromagnetic interference from the input signal. The adaptation module adapts parameters of one or more of i) the equalizer, ii) the analog front end, and iii) the echo canceller based on an error in an output of the equalizer due to the electromagnetic interference. The error detector detects when the error is greater than or equal to a predetermined threshold and in response sets an error indicator to indicate no error for a predetermined period of time. The controller controls adaptation of the parameters of the one or more of i) the equalizer, ii) the analog front end, and iii) the echo canceller based on the error indicator.