摘要:
The invention provides a steering column assembly for a vehicle. The steering column assembly includes a steering column operable to adjustably support a steering wheel in the vehicle. The steering column is moveable along a path for collapsing movement relative to a vehicle in response to an impact situation. The steering column assembly also includes an energy absorber for dissipating energy associated with the collapsing movement of the steering column along the path. The energy absorber includes an anvil fixedly disposed relative to one of the steering column and the path. The energy absorber also includes a strap drawable over the anvil and substantially fixedly disposed relative to the other of the steering column and the path. The steering column assembly also includes a second strap fixedly disposed relative to one of the steering column and the path for dissipating energy associated with the collapsing movement of the steering column along the path. The steering column assembly also includes at least one quick release bolt engaged with the strap to selectively release the strap relative to the other of the steering column and the path. The at least one quick release bolt engages both of the strap and the second strap.
摘要:
A steering column assembly includes a rake adjustment mechanism, and is attached to a vehicle by a mounting bracket. A rake bracket is coupled to the mounting bracket. A column jacket is collapsible in response to an emergency event and is supported by the mounting bracket and the rake bracket, and is rotationally moveable with the rake bracket about a rake axis relative to the mounting bracket. An instrument cluster is coupled to the rake bracket for movement along with the rake bracket and the column jacket to prevent obstruction of the instrument cluster by a steering wheel upon re-positioning the steering wheel, while not restricting movement of the column jacket during collapse of the column jacket in response to the emergency event. A dynamic absorber interconnects the instrument cluster and the rake bracket to reduce vibration of the steering column assembly caused by additional weight of the instrument cluster.
摘要:
A steering column assembly includes a rake adjustment mechanism, and is attached to a vehicle by a mounting bracket. A rake bracket is coupled to the mounting bracket. A column jacket is collapsible in response to an emergency event and is supported by the mounting bracket and the rake bracket, and is rotationally moveable with the rake bracket about a rake axis relative to the mounting bracket. An instrument cluster is coupled to the rake bracket for movement along with the rake bracket and the column jacket to prevent obstruction of the instrument cluster by a steering wheel upon re-positioning the steering wheel, while not restricting movement of the column jacket during collapse of the column jacket in response to the emergency event. A dynamic absorber interconnects the instrument cluster and the rake bracket to reduce vibration of the steering column assembly caused by additional weight of the instrument cluster.
摘要:
A steering column assembly is moveable in a rake direction and a telescope direction and extends along a longitudinal axis. The assembly includes a compression bracket mounted to a column jacket. A rake bracket is disposed over the compression bracket. The rake bracket defines a rake slot and includes a rake tooth rack disposed in the rake slot. The compression bracket defines a telescoping slot and includes a telescope tooth rack disposed in the telescope slot. A telescoping lock is disposed within the telescoping slot. A rake lock is disposed within the rake slot. A cam mechanism moves the rake lock into interlocking engagement with the rake tooth rack and moves the telescope lock into interlocking engagement with the telescope tooth rack when in the lock position, and disengages the rake lock from the rake tooth rack and the telescope lock from the telescope tooth rack when in the adjustment position.
摘要:
A steering column assembly is moveable in a rake direction and a telescope direction and extends along a longitudinal axis. The assembly includes a compression bracket mounted to a column jacket. A rake bracket is disposed over the compression bracket. The rake bracket defines a rake slot and includes a rake tooth rack disposed in the rake slot. The compression bracket defines a telescoping slot and includes a telescope tooth rack disposed in the telescope slot. A telescoping lock is disposed within the telescoping slot. A rake lock is disposed within the rake slot. A cam mechanism moves the rake lock into interlocking engagement with the rake tooth rack and moves the telescope lock into interlocking engagement with the telescope tooth rack when in the lock position, and disengages the rake lock from the rake tooth rack and the telescope lock from the telescope tooth rack when in the adjustment position.
摘要:
A steering column assembly includes a first jacket defining a first bore and a second jacket defining a second bore aligned with the first bore prior to collapse of the first jacket and the second jacket. A jacket connector extends through the bores to interconnect the first jacket and the second jacket. The jacket connector includes a pre-determined shear resistance, above which the jacket connector is sheared to permit telescopic movement between the first jacket and the second jacket. Accordingly, in response to an axial load greater than the pre-determined shear resistance of the jacket connector being applied to one of the first jacket and the second jacket, the jacket connector shears, permitting the telescopic movement. The jacket connector includes a pin defining a pin bore. The pin bore defines a cross sectional area, with the pre-determined shear resistance depending upon the cross sectional area of the pin bore.
摘要:
A steering column assembly includes a first jacket defining a first bore and a second jacket defining a second bore aligned with the first bore prior to collapse of the first jacket and the second jacket. A jacket connector extends through the bores to interconnect the first jacket and the second jacket. The jacket connector includes a pre-determined shear resistance, above which the jacket connector is sheared to permit telescopic movement between the first jacket and the second jacket. Accordingly, in response to an axial load greater than the pre-determined shear resistance of the jacket connector being applied to one of the first jacket and the second jacket, the jacket connector shears, permitting the telescopic movement. The jacket connector includes a pin defining a pin bore. The pin bore defines a cross sectional area, with the pre-determined shear resistance depending upon the cross sectional area of the pin bore.
摘要:
The latch mechanism includes the shoe release lever pivotally attached to the support housing for pivotal movement about a lever axis parallel to the tilt axis between the latched position and the unlatched position. A tab extends from a slide to define a connection between the lever and the slide for moving the slide out of engagement with a tilt shoe thereby allowing rotation of the tilt shoe to the unlatched position. The connection, defined by the tab and opening, is spaced along the release lever from the lever axis and the distal end defined by a knob to provide compact packaging while retaining adequate mechanical advantage.