摘要:
An interconnection between fully synchronous networks and next-generation frame communications networks is disclosed. A means of bidirectional frame format conversion between a synchronous multiplexing system and a logical multiplexing system is provided, along with a method of transmitting data between different networks on a path as if it were being transmitted in the same network. Further, when converting network control information in an STM network into data suitable for a packet network, even across the boundary of a synchronous multiplexing system and a logical multiplexing system, a unified communication management means is provided over the whole path.
摘要:
An interconnection between fully synchronous networks and next-generation frame communications networks is disclosed. A means of bidirectional frame format conversion between a synchronous multiplexing system and a logical multiplexing system is provided, along with a method of transmitting data between different networks on a path as if it were being transmitted in the same network. Further, when converting network control information in an STM network into data suitable for a packet network, even across the boundary of a synchronous multiplexing system and a logical multiplexing system, a unified communication management means is provided over the whole path.
摘要:
An interconnection between fully synchronous networks and next-generation frame communications networks is disclosed. A means of bidirectional frame format conversion between a synchronous multiplexing system and a logical multiplexing system is provided, along with a method of transmitting data between different networks on a path as if it were being transmitted in the same network. Further, when converting network control information in an STM network into data suitable for a packet network, even across the boundary of a synchronous multiplexing system and a logical multiplexing system, a unified communication management means is provided over the whole path.
摘要:
An interconnection between fully synchronous networks of the prior art and next generation frame communications networks, which is required for the shift to next-generation packet networks and a broader-based connection service, is realized. Here, the first point is that a means of bidirectional frame format conversion between a synchronous multiplexing system and a logical multiplexing system is provided, and a method of transmitting data between different networks on a path as if it was being transmitted in the same network. The second point is that when converting network control information in an STM network into data suitable for a packet network, even across the boundary of a synchronous multiplexing system and a logical multiplexing system, a unified communication management means is provided over the whole path. For this purpose, a hierarchized logical path control method is used wherein, in a network comprising two or more information relay devices having one or more line interfaces, this network performs communication between information relay devices using data packets, and has a means, when performing communication between any two points in the network, to control the path via which the packets pass between arbitrary end points, and the communication control means has a first communication path management function which performs communication management at the connection level which is terminated at the end point of a communication section, and a second communication path management function which performs communication management for each section of a physical circuit or logical circuit which is terminated at each communication section between any adjacent information relay devices in the communication section.
摘要:
A transmission apparatus for use in fixed bandwidth communications and variable bandwidth communications. The transmission apparatus has a memory unit, which stores information contained in a frame and indicating the amount of data to be transmitted from a terminal device, a computing unit, which calculates a bandwidth amount to be assigned to the terminal device based on the data amount, and a transmission unit, which sends the calculated assigned bandwidth amount to the terminal device. The transmission apparatus is characterized in that the computing unit calculates bandwidth amounts to be assigned to different types of flow of which different transmission qualities are requested according to a priority level that is set to each flow type. The transmission apparatus is also characterized in that bandwidth is controlled by designating, instead of a necessary bandwidth amount, transmission starting timing and transmission ending timing, particularly for fixed bandwidth communication data.
摘要:
A transmission apparatus for use in fixed bandwidth communications and variable bandwidth communications. The transmission apparatus has a memory unit, which stores information contained in a frame and indicating the amount of data to be transmitted from a terminal device, a computing unit, which calculates a bandwidth amount to be assigned to the terminal device based on the data amount, and a transmission unit, which sends the calculated assigned bandwidth amount to the terminal device. The transmission apparatus is characterized in that the computing unit calculates bandwidth amounts to be assigned to different types of flow of which different transmission qualities are requested according to a priority level that is set to each flow type. The transmission apparatus is also characterized in that bandwidth is controlled by designating, instead of a necessary bandwidth amount, transmission starting timing and transmission ending timing, particularly for fixed bandwidth communication data.
摘要:
Provided is a multicast path management method for a connectionless communication. Also provided is a path protection function which is effective when a path has failed. A network is formed by a trunk and a branch path. The multicast path is managed by end-to-end and when a failure has occurred, an instruction is issued from the apex of the multicast tree to respective end-to-end paths so as to switch from the currently used channel to a backup path. Thus, upon failure, an individual path protection can be performed without affecting other parts of the tree to which the same multicast flow as the defective path is distributed or the distribution state of the multicast flow.
摘要:
Provided is a multicast path management method for a connectionless communication. Also provided is a path protection function which is effective when a path has failed. A network is formed by a trunk and a branch path. The multicast path is managed by end-to-end and when a failure has occurred, an instruction is issued from the apex of the multicast tree to respective end-to-end paths so as to switch from the currently used channel to a backup path. Thus, upon failure, an individual path protection can be performed without affecting other parts of the tree to which the same multicast flow as the defective path is distributed or the distribution state of the multicast flow.
摘要:
An optical access system capable of avoiding cutoffs or interruption in the periodically transmitted signals that occur during the ranging time is provided. A first method to avoid signal cutoffs is to stop periodic transmit signals at the transmitter during the ranging period, and transmit all the periodic transmit signals together when the ranging ends, and buffer the signals at the receiver to prepare for ranging. A second method is to fix definite periods ahead of time for performing ranging, then cluster the multiple periodic transmit signals together in sets at the transmitter and send them, and then disassemble those sets back into signals at the receiver. The transmitting and receiving is then controlled so that the transmit periods do not overlap with the ranging periods. In this way an optical access system is provided that can send and receive signals requiring periodic transmissions without interruption even during ranging operation.
摘要:
A packet forwarding apparatus and network system for providing different types of bandwidth control services to the user; in which a packet forwarding apparatus for transferring data comprises an interface unit for sending and receiving packets, and a traffic shaper for controlling the packet transmission timing and a packet switch for sending an output to the interface unit as the destination of the received packet; and the traffic shaper uses a token bucket algorithm when transmitting a packet to guarantee the minimum frame rate, and uses a leaky bucket algorithm when limiting the peak frame rate.