Abstract:
An adjusting portion adjusts values of lightness, chroma, and hue. A change-amount setting portion sets an amount of change for each of lightness, chroma, and hue. A weighting-curve storing portion stores weighting curves for each of lightness, chroma, and hue. A weighting-factor determining portion determines, based on the weighting curves, weighting factors for the values of lightness, chroma, and hue. A specific-color-index determining portion determines a specific color index by multiplying each of the weighting factors determined by the weighting-factor determining portion. An adjustment-amount determining portion determines an adjustment amount by multiplying, by the specific color index, the amount of change set by the change-amount setting portion, and determines adjusted values of lightness, chroma, and hue based on the adjustment amount. An adjusted-color-image obtaining portion obtains an adjusted color image based on the adjusted values.
Abstract:
An adjusting portion adjusts values of lightness, chroma, and hue. A change-amount setting portion sets an amount of change for each of lightness, chroma, and hue. A weighting-curve storing portion stores weighting curves for each of lightness, chroma, and hue. A weighting-factor determining portion determines, based on the weighting curves, weighting factors for the values of lightness, chroma, and hue. A specific-color-index determining portion determines a specific color index by multiplying each of the weighting factors determined by the weighting-factor determining portion. An adjustment-amount determining portion determines an adjustment amount by multiplying, by the specific color index, the amount of change set by the change-amount setting portion, and determines adjusted values of lightness, chroma, and hue based on the adjustment amount. An adjusted-color-image obtaining portion obtains an adjusted color image based on the adjusted values.
Abstract:
An image processing apparatus for color image information inputs a combination of component values of reference colors that constitute a processing color, and converts the combination of component values into a lightness value, saturation value, and hue value. The first correction factor, the second correction factor, and the third correction factor each has a value of 1.0 for a lightness value, saturation value and hue value converted from a specified color respectively, and monotonically decreases toward 0.0. The modulation amount storage means stores a modulation amount of the lightness value, saturation value, and hue value respectively.The lightness correction means computes a corrected lightness value from the converted lightness value, the saturation correction means computes a corrected saturation value from the converted saturation value, and the hue correction means computes a corrected hue value from the converted hue value by using the first, second, and third correction factors, and the modulation amount. The inverse conversion means inversely converts the corrected lightness value, corrected saturation value, and corrected hue value into a combination of component values of reference colors.
Abstract:
An image processing apparatus for color image information inputs a combination of component values of reference colors that constitute a processing color, and converts the combination of component values into a lightness value, saturation value, and hue value. The first correction factor, the second correction factor, and the third correction factor each has a value of 1.0 for a lightness value, saturation value and hue value converted from a specified color respectively, and monotonically decreases toward 0.0. The modulation amount storage means stores a modulation amount of the lightness value, saturation value, and hue value respectively. The lightness correction means computes a corrected lightness value from the converted lightness value, the saturation correction means computes a corrected saturation value from the converted saturation value, and the hue correction means computes a corrected hue value from the converted hue value by using the first, second, and third correction factors, and the modulation amount. The inverse conversion means inversely converts the corrected lightness value, corrected saturation value, and corrected hue value into a combination of component values of reference colors.
Abstract:
In an image-forming method, a device reads line data L for one line and determines whether the resolution of the line data L in the main scanning direction is greater than or equal to a threshold th. If the resolution is greater than or equal to the threshold th, then a multiple line process is performed on the line data L to divide this data into two sets of partial line data L1 and L2. The partial line data L1 and L2 are used to form two lines at locations shifted from each other in the sub-scanning direction. However, if the resolution of the line data L is smaller than the threshold th, then a single line process is performed to divide the line data L into two segments Q1 and Q2. The segments Q1 and Q2 of the line data L are used to form a single line at the same location in the sub-scanning direction by printing the segment Q1 in the first main scanning operation and by printing the segment Q2 in the second main scanning operation.
Abstract:
Colorimetric data corresponding to corner grid points in an RGB color space, such as grid point P1, is used without correction. For grid points positioned on an edge, such as grid point P2, an average value is calculated for calorimetric data corresponding to a total of three grid points, including a target grid point and two adjacent grid points on the edge. For grid points positioned on a surface, such as grid point P4, an average value is calculated for calorimetric data corresponding to a total of nine grid points, including the target grid point and eight adjacent grid points on the surface. For grid points positioned inside the cube-shaped grid, such as grid point P5, an average value is calculated for calorimetric data corresponding to a total of 27 grid points, including the target grid point and 26 grid points adjacent to the target grid point three-dimensionally.
Abstract:
A first conversion table defines a plurality of grid points that are arranged in a predetermined color space. The grid points include a darkest grid point that is indicative of a darkest point among all the grid points. The grid points further include at least (N+1) number of grid points that are successively arranged in a predetermined direction from the darkest grid point, N being an integer greater than or equal to one (1), the grid points including an N-th grid point and an (N+1)-th grid point that are located N-th and (N+1)-th among the at least (N+1) number of grid points, respectively. The first conversion table lists up an intermediate-component-value combination at each grid point, the intermediate-component-value combination, at least one grid point that is located between the darkest grid point and the (N+1)-th grid point in the predetermined direction and that includes the N-th grid point, being determined through interpolation based on the intermediate-component-value combination at the darkest grid point and on the intermediate-component-value combination at the (N+1)-th grid point.
Abstract:
According to an image processing method, an input value combination is received. The input value combination includes a plurality of input values for a plurality of primary colors and is indicative of image information. The received input value combination is converted into an output value combination that includes a plurality of output values for a plurality of components for printing, the plurality of components for printing including black, the output value for black being smaller than or equal to a value of an allowable black maximum. An image obtained by printing an output value combination, whose value for black being greater than zero (0) and smaller than or equal to the value of the allowable black maximum value, exhibits substantially the same gloss with another image obtained by printing an output value combination, whose output value for black being equal to zero (0).
Abstract:
According to a hue conversion, hue angles of C, M, and Y are always set to hue angles HC, HM, and HY of C, M, and Y of a printer, hue angles of R and G are always set to hue angles HR and HG of R and G of a monitor, and the hue angle of B is always set to a value HB desired by a user. The gradation from black through a full color to white is made linear in each color of R, G, B, C, M, and Y according to the hue conversion. The user sets the hue angle HB for B. Therefore, the user can obtain blue color B which provides the user's favorite hue and gradation. Every hue can be reproduced excellently and gradations can be reproduced without color shifts.
Abstract:
In an image-forming method, a device reads line data L for one line and determines whether the resolution of the line data L in the main scanning direction is greater than or equal to a threshold th. If the resolution is greater than or equal to the threshold th, then a multiple line process is performed on the line data L to divide this data into two sets of partial line data L1 and L2. The partial line data 'L1 and L2 are used to form two lines at locations shifted from each other in the sub-scanning direction. However, if the resolution of the line data L is smaller than the threshold th, then a single line process is performed to divide the line data L into two segments Q1 and Q2. The segments Q1 and Q2 of the line data L are used to form a single line at the same location in the sub-scanning direction by printing the segment Q1 in the first main scanning operation and by printing the segment Q2 in the second main scanning operation.