摘要:
The impact accuracy of ejected droplets, the quality of printed images, and print speed can be improved in a print head having an ink channel for which the width thereof in a direction orthogonal to an ink supply direction in which ink is supplied from an ink supply port to a pressure chamber is smaller than that of a pressure chamber. In the print head, the center of a heater along the ink supply direction is offset from the center of the pressure chamber along the ink supply direction, toward the side of the pressure chamber far from the ink supply port in the ink supply direction.
摘要:
A present invention improves the impact accuracy of ejected droplets, the quality of printed images, and print speed. A print head according to the present invention has an ink channel for which the width thereof in a direction orthogonal to an ink supply direction in which ink is supplied from an ink supply port to a pressure chamber is smaller than that of a pressure chamber. In the print head, the center of a heater along the ink supply direction is offset from the center of the pressure chamber along the ink supply direction, toward the side of the pressure chamber far from the ink supply port in the ink supply direction.
摘要:
The present invention provides a liquid ejection head for which the peeling of an orifice plate from a substrate seldom occurs, even in a structure such that the walls that define each energy application chamber are narrowed toward a ejection port. The walls that define a first pressure chamber are inclined inward within the first pressure chamber, so that the first pressure chamber is narrowed, toward an ejection port, along a direction perpendicular to the heater formation face on which heaters are arranged. Further, the walls that define each ink flow path are inclined in the ink ejection direction. Furthermore, the angle at which the walls that define the ink flow path are inclined relative to the ink ejection direction is smaller than the angle at which the walls that define the first pressure chamber are inclined inward, within the first pressure chamber.
摘要:
While the print head is reduced in size, the adverse effect of air flows produced by ink droplets as they are ejected from a small number of ejection opening arrays is minimized. A small number of first ejection opening arrays eject one of three primary colors—cyan, magenta and yellow—and a large number of second and third ejection opening arrays eject the remaining two primary colors. A fourth ejection opening array is disposed between the first ejection opening array and the second or third ejection opening array.
摘要:
A liquid ejecting head includes a substrate, a nozzle forming member for forming on a principal surface of the substrate a nozzle comprising a flow passage of liquid and an orifice for ejecting the liquid, and a dummy pattern. The dummy pattern has substantially the same dimension as at least a part of the nozzle and is formed so that a cross-section of the dummy pattern is exposed at an end surface of the nozzle forming member.
摘要:
The landing precision of ink drops is improved to improve the image quality and increase the printing speed. An inkjet print head ejects ink supplied from an ink supply port from a plurality of ejection ports respectively connecting to ink paths having different flow resistances by using energy generated by a plurality of electrothermal transducer elements respectively corresponding to the plurality of the ejection ports, wherein each of the plurality of the ejection ports connected to the ink paths having a low ink flow resistance is arranged so that the center of each of the plurality of the ejection ports is positioned farther away from the ink supply port to the center of the corresponding electrothermal transducer element than each of the plurality of the ejection ports connected to the ink paths having a high ink flow resistance.
摘要:
A liquid ejecting head includes a substrate, a nozzle forming member for forming on a principal surface of the substrate a nozzle comprising a flow passage of liquid and an orifice for ejecting the liquid, and a dummy pattern. The dummy pattern has substantially the same dimension as at least a part of the nozzle and is formed so that a cross section of the dummy pattern is exposed at an end surface of the nozzle forming member.
摘要:
The present invention provides a liquid ejection head for which the peeling of an orifice plate from a substrate seldom occurs, even in a structure such that the walls that define each energy application chamber are narrowed toward an ejection port. The walls that define a first pressure chamber are inclined inward within the first pressure chamber, so that the first pressure chamber is narrowed, toward an ejection port, along a direction perpendicular to the heater formation face on which heaters are arranged. Further, the walls that define each ink flow path are inclined in the ink ejection direction. Furthermore, the angle at which the walls that define the ink flow path are inclined relative to the ink ejection direction is smaller than the angle at which the walls that define the first pressure chamber are inclined inward, within the first pressure chamber.
摘要:
The landing precision of ink drops is improved to improve the image quality and increase the printing speed. An inkjet print head ejects ink supplied from an ink supply port from a plurality of ejection ports respectively connecting to ink paths having different flow resistances by using energy generated by a plurality of electrothermal transducer elements respectively corresponding to the plurality of the ejection ports, wherein each of the plurality of the ejection ports connected to the ink paths having a low ink flow resistance is arranged so that the center of each of the plurality of the ejection ports is positioned farther away from the ink supply port to the center of the corresponding electrothermal transducer element than each of the plurality of the ejection ports connected to the ink paths having a high ink flow resistance.
摘要:
Provided are a printing head and an inkjet printing apparatus, which eject liquid droplets without leaving behind any bubble in each nozzle, thus having an enhanced durability. An ejection port of the printing head includes a first ejection port part communicating with the atmosphere and a second ejection port part having a cross-section orthogonal to an ejection direction being larger than a cross-section of the first ejection port part orthogonal to the ejection direction, and being formed between the energy effect chamber and the first ejection port part. In addition, the second ejection port part is formed to be eccentric to an electrothermal transducing element in an ink supply direction in which ink is supplied from an ink supplying port to the bubbling chamber.