摘要:
In the apparatus and method of the invention, a servo signal reproduction unit generates a PES from a servo signal reproduced from a magnetic tape, and a frequency conversion unit performs FFT processing of the PES to generate frequency component information. Then, a filter value generation unit generates filter values based on the frequency component information and writes these to a memory. When recording various data signals to the magnetic tape, the filter values are read from the memory and a control filter serving as a notch filter is incorporated into a feedback control for a tracking servo. This enables periodic and narrow-band noise to be removed from a PES, consequently reducing PESs. Accordingly, learning-type optimum notch filter control that allows a magnetic head to follow recording tracks at high speed and with high precision is possible even when the recording track width is reduced and the tape speed is increased.
摘要:
In the apparatus and method of the invention, a servo signal reproduction unit generates a PES from a servo signal reproduced from a magnetic tape, and a frequency conversion unit performs FFT processing of the PES to generate frequency component information. Then, a filter value generation unit generates filter values based on the frequency component information and writes these to a memory. When recording various data signals to the magnetic tape, the filter values are read from the memory and a control filter serving as a notch filter is incorporated into a feedback control for a tracking servo. This enables periodic and narrow-band noise to be removed from a PES, consequently reducing PESs. Accordingly, learning-type optimum notch filter control that allows a magnetic head to follow recording tracks at high speed and with high precision is possible even when the recording track width is reduced and the tape speed is increased.
摘要:
An apparatus is provided for measuring a spacing between an object to be measured T and a transparent object 4. The transparent object 4 is disposed, facing a surface of the object to be measured T, light is emitted to impinge through the transparent object 4 onto the object to be measured T, and the spacing is calculated based on an intensity of interference light occurring in a facing portion between the surface of the object to be measured T and the transparent object 4. The apparatus comprises a light source 1 for emitting light, a modulator 2 for modulating an intensity of the emitted light with modulation waves having a predetermined frequency, a sensor 7 for converting the light intensity of the interference light into an electrical signal, and a synchronous demodulator 8 for subjecting the electrical signal to synchronous demodulation using the modulation waves as reference waves.
摘要:
The present invention provides a magnetic head that can sustain favorable head contact even when magnetic tapes having different thicknesses are used. A magnetic head has a sliding surface coming in contact with a moving magnetic tape. An electromagnetic transducing element is disposed in the sliding surface. First edges are formed at each end of the sliding surface in the direction of movement of the magnetic tape. Second edges are formed in positions extended in the direction of movement of the magnetic tape from each end of the sliding surface and come in contact with the magnetic tape.
摘要:
The present invention provides a magnetic head that can sustain favorable head contact even when magnetic tapes having different thicknesses are used. A magnetic head has a sliding surface coming in contact with a moving magnetic tape. An electromagnetic transducing element is disposed in the sliding surface. First edges are formed at each end of the sliding surface in the direction of movement of the magnetic tape. Second edges are formed in positions extended in the direction of movement of the magnetic tape from each end of the sliding surface and come in contact with the magnetic tape.
摘要:
A magnetic head assembly of the present invention includes a head rail having a plurality of head element portions each including a MR element and sliding portions that come into contact with a magnetic tape, and a protective film on a magnetic tape sliding surface of the head element portions and the sliding portions, wherein the protective film is formed in a portion other than the vicinity of both ends of the head rail in a traveling direction, and an outermost surface of the protective film, on which a magnetic tape is capable of sliding, is formed flat. Thus, a magnetic head assembly used in a magnetic tape apparatus can be provided, in which an output does not decrease due to the abrasion deformation of the head element portions and the increase in spacing by the adhesion of stain.
摘要:
A magnetic head assembly of the present invention includes a head rail having a plurality of head element portions each including a MR element and sliding portions that come into contact with a magnetic tape, and a protective film on a magnetic tape sliding surface of the head element portions and the sliding portions, wherein the protective film is formed in a portion other than the vicinity of both ends of the head rail in a traveling direction, and an outermost surface of the protective film, on which a magnetic tape is capable of sliding, is formed flat. Thus, a magnetic head assembly used in a magnetic tape apparatus can be provided, in which an output does not decrease due to the abrasion deformation of the head element portions and the increase in spacing by the adhesion of stain.
摘要:
A servo controlling method of the present invention is a servo controlling method for controlling a position of a magnetic head against a magnetic tape that is accommodated in a cartridge and has at least a data track and a servo track, and the method includes the steps of: reading tape variance information from a magnetic tape cartridge (23) side, the magnetic tape cartridge (23) being composed of a cartridge (20) and a magnetic tape (21); reading a servo signal recorded in the servo track by the magnetic head and converting the servo signal into head position information; and controlling the position of the magnetic head according to an off-track value based on the tape variance information and an off-track value calculated from the head position information. With this configuration, even in the case where a recording track width is narrowed and a tape speed is increased, the magnetic head can follow a recording track accurately at a high speed.
摘要:
A servo controlling method of the present invention is a servo controlling method for controlling a position of a magnetic head against a magnetic tape that is accommodated in a cartridge and has at least a data track and a servo track, and the method includes the steps of: reading tape variance information from a magnetic tape cartridge (23) side, the magnetic tape cartridge (23) being composed of a cartridge (20) and a magnetic tape (21); reading a servo signal recorded in the servo track by the magnetic head and converting the servo signal into head position information; and controlling the position of the magnetic head according to an off-track value based on the tape variance information and an off-track value calculated from the head position information. With this configuration, even in the case where a recording track width is narrowed and a tape speed is increased, the magnetic head can follow a recording track accurately at a high speed.
摘要:
A servo controlling method of the present invention is a servo controlling method for controlling a position of a magnetic head against a magnetic tape that is accommodated in a cartridge and has at least a data track and a servo track, and the method includes the steps of: reading tape variance information from a magnetic tape cartridge 23 side, the magnetic tape cartridge 23 being composed of a cartridge 20 and a magnetic tape 21; reading a servo signal recorded in the servo track by the magnetic head and converting the servo signal into head position information; and controlling the position of the magnetic head according to an off-track value based on the tape variance information and an off-track value calculated from the head position information. With this configuration, even in the case where a recording track width is narrowed and a tape speed is increased, the magnetic head can follow a recording track accurately at a high speed