Abstract:
A valve mechanism (3) includes a valve seat member (31) having a guiding portion (319); a valve member (32) having a valve body (321), a guiding shaft (322), and a supporting shaft (323); and a sub-valve member (33) having a sub-valve body (331) and a connecting portion (332). The valve body (321) and the sub-valve body (331) ascend together by pressing the fluid-storing portion (11); and the valve body (321) travels to an open position and the sub-valve body (331) travels to a detached position. In this state, when a pressure applied to the fluid-storing portion (11) is removed, the valve body (321) and the sub-valve body (331) descend together; and after the sub-valve body (331) travels to a contact position, the valve body (321) travels to a closed position.
Abstract:
A cosmetic device comprises a support member; a cap member attached to the support member and having a front face; a vibration actuator disposed inside the cap member, which produces vibration for providing massage effect on a skin; and an uneven surface member as an outermost layer covering at least the front face of the cap member. The uneven surface is configured to prevent denudation of a treatment agent applied on the skin.
Abstract:
A fluid-storing portion 4 includes an external container (110), an internal container (120), and a coupling material (140) which forms an internal space (130) shielded from the outside between the internal container (120) and the external container (110). When the volume of the internal container (120) is decreased, the internal space (130) is depressurized and receives force in a direction toward the internal space (130) from outside. Consequently, air flows into the internal space (130) from the outside by the action of a runoff prevention mechanism (144 and 147) of the coupling material (140).
Abstract:
A fluid mixing device for a tub includes a closed mixing chamber having: a liquid inlet for introducing liquid into the mixing chamber; a gas inlet for introducing gas into the mixing chamber; and a gas-containing liquid outlet for discharging gas-containing liquid from the mixing chamber to a tub.
Abstract:
A valve mechanism (3) includes a valve seat member (31) having a guiding portion (319); a valve member (32) having a valve body (321), a guiding shaft (322), and a supporting shaft (323); and a sub-valve member (33) having a sub-valve body (331) and a connecting portion (332). The valve body (321) and the sub-valve body (331) ascend together by pressing the fluid-storing portion (11); and the valve body (321) travels to an open position and the sub-valve body (331) travels to a detached position. In this state, when a pressure applied to the fluid-storing portion (11) is removed, the valve body (321) and the sub-valve body (331) descend together; and after the sub-valve body (331) travels to a contact position, the valve body (321) travels to a closed position.
Abstract:
A piston adapted to be engaged inside a cylindrical container is constituted by an elastic member and includes: a sliding member having an upper fluidtight portion and a lower fluidtight portion, both of which fluidtightly and slidably contact an inner wall of the cylindrical container; and a support member having an upper concentric flexion and a lower concentric flexion to urge the sliding member against the inner wall of the cylindrical container.
Abstract:
A fluid storage container includes a container main body 10 which stores fluid inside, a discharge outlet member 20 which is formed at the opening 11 which is formed on the container main body 10, a tube member 30 which has a flow path 31 which reaches the discharge outlet member 20 from the base of the container main body 10, and a piston member 40 which moves an inside cylinder within the container main body 10. This fluid storage container stores fluid in the space that is formed between the base of the container main body 10 and the piston member 40. In addition, this fluid storage container provides, within the discharge outlet member 20, an inflow valve structure 50 which flows in fluid that has been stored in the container main body 10 and an outflow valve structure 60 which flows out to the outside fluid that has been entered with the inflow valve structure 50.
Abstract:
A fluid-storing container includes a fluid-dispensing pump 1 having an inflow valve mechanism 4, an outflow valve mechanism 5, a bellows member 6 and a leakage prevention member 101, a nozzle head 2, and a fluid-storing portion 3. The leakage prevention member 101 is disposed at the lower end of a coupling member 102 and allows a fluid to pass through only when the bellows member 6 deforms.
Abstract:
A valve seat portion 20 has a nearly tubular shape, at the bottom of which a circular opening portion 23 which functions as a valve seat is formed. A valve portion 10 has a ring-shaped supporting portion 11 which is disposed inside the valve seat portion 20. A valve body 12 has a shape corresponding to the circular opening portion 23, and multiple coupling portions couple the supporting portion 11 and the valve body 12. In the valve portion 10, the valve body can move between a closed position in which the valve body closes the opening portion 23 in the valve seat portion 20 and an open position in which the valve body opens the opening portion 23 by the flexibility of the four coupling portions 13.