摘要:
Provided is a cleaning robot system and a method of controlling the same for economically cleaning, with high workability, plate-shaped members, such as solar cell panels and reflecting mirrors used in photovoltaic power generation and solar thermal power generation systems. A cleaning robot system (1) for cleaning planar or curved plate-shaped members (4a), (4b) that are panels for photovoltaic power generation or reflecting mirrors for solar thermal power generation includes: a large number of cleaning robots (2) each having a function to travel on each of the plate-shaped members (4) which are to be cleaned and a function to clean the plate-shaped members (4); and an arranging robot (3) having a conveying function to move any of the cleaning robots (2) from a first one (4a) of the plate-shaped members to a second one (4b) of the plate-shaped members. Each of the cleaning robots (2) has a suction mechanism for performing cleaning while attaching onto one of the plate-shaped members (4), and the large number of cleaning robots (2) and a smaller number of the arranging robots (3) than that of the cleaning robots (2) cooperate together to clean the plate-shaped members (4) placed in a photovoltaic power generation or solar thermal power generation plant.
摘要:
Provided is a cleaning robot system and a method of controlling the same for economically cleaning, with high workability, plate-shaped members, such as solar cell panels and reflecting mirrors used in photovoltaic power generation and solar thermal power generation systems. A cleaning robot system (1) for cleaning planar or curved plate-shaped members (4a), (4b) that are panels for photovoltaic power generation or reflecting mirrors for solar thermal power generation includes: a large number of cleaning robots (2) each having a function to travel on each of the plate-shaped members (4) which are to be cleaned and a function to clean the plate-shaped members (4); and an arranging robot (3) having a conveying function to move any of the cleaning robots (2) from a first one (4a) of the plate-shaped members to a second one (4b) of the plate-shaped members. Each of the cleaning robots (2) has a suction mechanism for performing cleaning while attaching onto one of the plate-shaped members (4), and the large number of cleaning robots (2) and a smaller number of the arranging robots (3) than that of the cleaning robots (2) cooperate together to clean the plate-shaped members (4) placed in a photovoltaic power generation or solar thermal power generation plant.
摘要:
The direction of a solar light tracking sensor is set easily with high accuracy. A solar light tracking guide (35) is installed on the optical axis (11) of the reflected light collected by a heliostat (2). An optical telescope (47) is so attached to the rear end part of the guide (35) as to be aligned with the guide axis (C) of the guide (35). The posture of the solar light tracking guide (35) is so adjusted that a cross provided in the field of view of the telescope (47) agrees with the center (10a) of the light collection target position and fixed to the base (38). Then, a solar light tracking sensor (12) is fastened to the rear end part of the guide (35) in place of the optical telescope (47).
摘要:
Lower heat-collection efficiency and a much smaller amount of solar heat may result from the providing of only a single receiver on a supporting post to collect lights coming from both heliostats located at nearby positions and heliostats located at faraway positions. A solar heat power generation device to be provided by the invention can avoid such problems. The solar heat power generation device has the following characteristic features. The solar heat power generation device comprises: a supporting post 4 including a receiver 1 that receives sunlight; and a plurality of heliostats 6 which are provided concentrically around the supporting post 4 and which reflect the sunlight towards the receiver 1. The supporting post 4 includes at least two receivers 1a and 1b that are arranged in the up-and-down direction. The receiver 1a provided at an upper-side position receives reflected lights L1 coming from the heliostats 6a located at faraway positions, and the receiver 1b provided at a lower-side position receives reflected lights L2 coming from the heliostats 6b located at nearby positions.
摘要:
The direction of a solar light tracking sensor is set easily with high accuracy. A solar light tracking guide (35) is installed on the optical axis (11) of the reflected light collected by a heliostat (2). An optical telescope (47) is so attached to the rear end part of the guide (35) as to be aligned with the guide axis (C) of the guide (35). The posture of the solar light tracking guide (35) is so adjusted that a cross provided in the field of view of the telescope (47) agrees with the center (10a) of the light collection target position and fixed to the base (38). Then, a solar light tracking sensor (12) is fastened to the rear end part of the guide (35) in place of the optical telescope (47).