摘要:
A method for processing color image data that enables to optimally render a color image on a target device. The method incorporates a color gamut mapping step, where the amount of gamut mapping is adapted dynamically, in dependence of at least a color saturation value of the input pixel. Preferably, also a luminance value of the input pixel is used. The adaptive gamut mapping incorporates correction of saturation, and preferably also hue and white point, of the image data. The color gamut of the target device is used to the fullest possible extent, while clipping and loss of local details in highly saturated areas of the input image is largely prevented.
摘要:
A method of converting a three-primary input color signal (IS) comprising three input components (R, G, B) per input sample into an N-primary color drive signal (DS) comprising N≧4 drive components (D1, . . . , DN) per output sample for driving N sub-pixels (SP1, . . . , SPN) of a color additive display. The N sub-pixels (SP1, . . . , SPN) have N primary colors. The method comprises adding (10), to three equations defining a relation between the N drive components (D1, . . . , DN) and the three input components (R, G, B), at least one linear equation defining a value for a combination of a first subset of the N drive components (D1, . . . , DN) and a second subset of the N-drive components (D1, . . . , DN) to obtain an extended set of equations. The first subset comprises a first linear combination (LC1) of 1≦M1
摘要:
A method of converting a three-primary input color signal (IS) comprising three input components (R, G, B) per input sample into an N-primary color drive signal (DS) comprising N≧4 drive components (D1, . . . , DN) per output sample for driving N sub-pixels (SP1, . . . , SPN) of a color additive display. The N sub-pixels (SP1, . . . , SPN) have N primary colors. The method comprises adding (10), to three equations defining a relation between the N drive components (D1, . . . , DN) and the three input components (R, G, B), at least one linear equation defining a value for a combination of a first subset of the N drive components (D1, . . . , DN) and a second subset of the N-drive components (D1, . . . , DN) to obtain an extended set of equations. The first subset comprises a first linear combination (LC1) of 1≦M1
摘要:
A method of mapping a four primary input signal to sets of four sub-pixels of a display device, the method including sub-sampling the input samples of the four primary input signal by assigning the first, second and third input signals of a particular input sample to the first, second and third sub-pixels, producing first, second and third primary colors of a particular set of four adjacent sub-pixels, respectively, and the fourth input signal of a further input sample to the fourth sub-pixel, producing a fourth color of said particular set of the four adjacent sub-pixels, wherein the particular input sample and the further input sample are associated with adjacent positions on the display device.
摘要:
A method of redistributing an N-primary color input signal (IS) having a particular number≧4 (N) of input components (I1, . . . , IN) into N-primary color output signal (OS) having the particular number (N) of output components (P1, . . . , PN) under a constraint (CON2). The method comprises defining (MPRC) three functions (F1, F2, F3) representing three (P1, P2, P3) of the output components (P1, . . . , PN) as a function of the remaining N-3 output components (P4, . . . , PN). Substituting (MPRC) the values of the input components (I1, . . . , IN) into the three functions (F1, F2, F3) to determine unknown coefficients (P1′, P2′, P3′) of the three functions (F1, F2, F3). And, determining (MPRC) optimal values of the output components (P1, . . . , PN) by applying the constraint (CON2) to the three functions (F1, F2, F3).
摘要:
An improved subpixel arrangement for pixelated displays, wherein cross-shaped elements comprising a yellow subpixel surrounded by blue subpixels are distributed over the surface of the display. Further red and green subpixels can be arranged such that white light is emitted from three adjacent rows and three adjacent columns of a pixel comprising said cross-shaped element.
摘要:
A method of redistributing an N-primary color input signal (IS) having a particular number≧4 (N) of input components (I1, . . . , IN) into N-primary color output signal (OS) having the particular number (N) of output components (P1, . . . , PN) under a constraint (CON2). The method comprises defining (MPRC) three functions (F1, F2, F3) representing three (P1, P2, P3) of the output components (P1, . . . , PN) as a function of the remaining N-3 output components (P4, . . . , PN). Substituting (MPRC) the values of the input components (I1, . . . , IN) into the three functions (F1, F2, F3) to determine unknown coefficients (P1′, P2′, P3′) of the three functions (F1, F2, F3). And, determining (MPRC) optimal values of the output components (P1, . . . , PN) by applying the constraint (CON2) to the three functions (F1, F2, F3).
摘要:
A method of mapping a four primary input signal (IS) to sets (Pij) of four sub-pixels (RPij, GPij, BPij, WPij) of a display device (DD). The four primary input signal (IS) comprises a sequence of input samples (Sij) each comprising a value for a first input signal (Rlij), a value for a second input signal (Glij), a value for a third input signal (Blij), and a value for a fourth input signal (Wlij). The sets (Pij) of the four sub-pixels comprise a first sub-pixel (RPij) to supply light having a first primary color (R), a second sub-pixel (GPij) to supply light having a second primary color (G), a third sub-pixel (BPij) to supply light having a third primary color, and a fourth sub-pixel (WPij) to supply fourth light having a fourth color (W), the first, second, third and fourth color all being different, and the fourth color being within the color gamut of the first, second, and third color. The method comprises sub-sampling (MAP) the input samples (Sij) of the four primary input signal (IS) by assigning the first input signal (RI11), the second input signal (GI11), and the third input signal (BI11) of a particular input sample (SI11) to the first (RP11), second (GP11) and third sub-pixel (BP11) of a particular set (P11) of four adjacent sub-pixels, respectively, and by assigning the fourth input signal (WI12) of a further input sample (S12) to the fourth sub-pixel (WP11) of said particular set (S11) of the four adjacent sub-pixels, wherein the particular input sample (S11) and the further input sample (S12) are associated with adjacent positions on the display device (DD).
摘要:
A controller for a multi-primary display having M>3 primaries receives a set of input N-primary image color defining values comprising drive values for N primaries for each pixel. A compensator (317) generates a set of compensated N-primary image color (N>=3) defining values by applying a luminance compensation to the values of the set of input N-primary image color defining values where the luminance compensation for each pixel depends on the chromaticity of the pixel. A backlight processor (311) determines backlight levels in response to the compensated N-primary image color defining values. A modifier (313) then generates modified N-primary image color defining values by adjusting the input or the modified N-primary image color defining values or the for the backlight level and a primary converter (315) converts the modified N-primary image color defining values into multi-primary drive values for the display. The approach may e.g. reduce clipping for multi-primary displays with dynamic backlight control by introducing a low complexity pre-processing luminance compensation to existing equipment.
摘要:
To have a good resolution/sharpness for the displayed pictures (e.g. low interference banding in case of showing a pattern having Nyquist limit problems), the multiprimary display (100), has more than 3 additive primaries (R,C,G,B), in which that half of the primaries (C,G) having the highest output luminances of the more than 3 additive primaries (R,C,G,B) when a corresponding driving signal (r) for the respective primary is maximal, is generatable by subpixels (104, 108) of the display at approximately equidistant subpixel positions (Dd).