Abstract:
According to the disclosure, a unique and novel archiving system that provides one or more application layer partitions to archive data is disclosed. Embodiments include an active archive including a fixed storage. The active archive can create application layer partitions that associate the application layer partitions with portions of the fixed storage. Each application layer partition, in embodiments, has a separate set of controls that allow for customized storage of different data within a single archiving system. Further, embodiments of methods for ensuring storage capacity in the active archive and the application layer partitions within the active archive is also disclosed.
Abstract:
Systems and methods for commonality factoring for storing data on removable storage media are described. The systems and methods allow for highly compressed data, e.g., data compressed using archiving or backup methods including de-duplication, to be stored in an efficient manner on portable memory devices such as removable storage cartridges. The methods include breaking data, e.g., data files for backup, into unique chunks and calculating identifiers, e.g., hash identifiers, based on the unique chunks. Redundant chunks can be identified by calculating identifiers and comparing identifiers of other chunks to the identifiers of unique chunks previously calculated. When a redundant chunk is identified, a reference to the existing unique chunk is generated such that the chunk can be reconstituted in relation to other chunks in order to recreate the original data. The method further includes storing one or more of the unique chunks, the identifiers and/or the references on the removable storage medium.
Abstract:
Embodiments provide systems and methods for maintaining immutable data in an archiving system using random access memory. To ensure data is immutable, novel pointers are maintained in the hardware/firmware of the drive ports and on the removable disk drives. For example, a hardware/firmware in a modular drive bay maintains a pointer to a memory address in the removable disk drive memory that cannot write to a memory block that precedes the pointer. Data may only be stored after the pointer in the removable disk drive. As such, once data is written to the removable disk drive, the data cannot be overwritten although the removable disk drive employs random access memory.
Abstract:
Systems and methods for commonality factoring for storing data on removable storage media are described. The systems and methods allow for highly compressed data, e.g., data compressed using archiving or backup methods including de-duplication, to be stored in an efficient manner on portable memory devices such as removable storage cartridges. The methods include breaking data, e.g., data files for backup, into unique chunks and calculating identifiers, e.g., hash identifiers, based on the unique chunks. Redundant chunks can be identified by calculating identifiers and comparing identifiers of other chunks to the identifiers of unique chunks previously calculated. When a redundant chunk is identified, a reference to the existing unique chunk is generated such that the chunk can be reconstituted in relation to other chunks in order to recreate the original data. The method further includes storing one or more of the unique chunks, the identifiers and/or the references on the removable storage medium. The acceleration hardware and/or software can reside in multiple devices, depending on the embodiment. For example, hardware and/or software for the chunking and/or hashing functions can reside in one or more of a host computer, a removable storage device, a removable cartridge holder and the removable storage cartridge.
Abstract:
Embodiments provide systems and methods for maintaining immutable data in an archiving system using random access memory. To ensure data is immutable, novel pointers are maintained in the hardware/firmware of the drive ports and on the removable disk drives. For example, a hardware/firmware in a modular drive bay maintains a pointer to a memory address in the removable disk drive memory that cannot write to a memory block that precedes the pointer. Data may only be stored after the pointer in the removable disk drive. As such, once data is written to the removable disk drive, the data cannot be overwritten although the removable disk drive employs random access memory.
Abstract:
An archiving system including one or more removable disk drives embedded in removable disk cartridges, referred to simply as removable disk drives. The removable disk drives allow for expandability and replacement such that the archiving system need not be duplicated to add new or more storage capacity. In embodiments, the removable disk drives store metadata that contain information about the data stored on the removable disk drive. The metadata allows the system to retrieve the correct data from the random access memory and establishes controls on the data stored on the removable disk drive. In embodiments, the metadata is stored in two locations, such that, if the metadata in one location is corrupted, the second copy of the metadata may be retrieved.
Abstract:
Systems and methods for storing and accessing data on a removable media having a changeable data set and an immutable data set. In one embodiment, a system can comprise a removable media storage system adapted to determine whether a host system running one or more applications is configured to enforce Write Once Read Many (WORM) policies. The host system can be communicatively coupled with the removable media storage system and configured to execute instructions causing the host system to determine whether to allow or deny a request to access data on the removable media. The host system can use rules to determine if an access request is to access data of a changeable data set or a immutable data set. If the request is to access data of the changeable data set, access is allowed. If the request is to access data of the immutable data set, reads are allowed, as well as writes of new data. Access requests to rename, delete, and/or write to existing data of the immutable data set are denied.
Abstract:
Embodiments provide systems and methods for maintaining immutable data in an archiving system using random access memory. To ensure data is immutable, novel pointers are maintained. For example, a modular drive bay maintains a pointer to a memory address in the removable drive memory cannot write data to a memory block that precedes the pointer. Data may only be stored after the pointer in the removable drive. As such, once data is written to the removable drive, the data cannot be overwritten although the removable drive employs random access memory.
Abstract:
Embodiments of archival storage system are disclosed. The archival storage system includes one or more removable disk drives that provide random access and are readily expandable. In embodiments, some or all of the data within the removable disk drive(s) is immutable. The archiving system creates a designation for the data representing the data as having Write Once Read Many (WORM) protection. Actions associated with the data may be received and determined to be read accesses. If the actions are something other than a read access, the archiving system, in embodiments, prevents the action on the data.
Abstract:
According to the disclosure, a unique and novel archiving system that provides one or more application layer partitions to archive data is disclosed. Embodiments include an active archive including a fixed storage. The active archive can create application layer partitions that associate the application layer partitions with portions of the fixed storage. Each application layer partition, in embodiments, has a separate set of controls that allow for customized storage of different data within a single archiving system. Further, embodiments of methods for ensuring storage capacity in the active archive and the application layer partitions within the active archive is also disclosed.