Abstract:
A receiver includes a mixing module for mixing an input signal by at least one mixing sequence to produce a mixed signal. The mixed signal is filtered to produce a first filtered signal. A first downsampler downsamples the first filtered signal to produce a first decimated signal, wherein the decimation period is not a multiple of the mixing period.
Abstract:
A method for signal strength detection begins by comparing a signal strength representation of a signal with a signal strength representation of a reference signal. The method continues by adjusting, when the signal strength representation of the signal compares unfavorably with the signal strength representation of the reference signal, at least one of the signal strength representation of the signal and the signal strength representation of the reference signal until the signal strength representation of the signal compares favorably with the signal strength representation of the reference signal. The method continues by determining signal strength of the signal based on the adjusting of the signal strength representation of the signal and signal strength of the reference signal.
Abstract:
In a multimedia SOC that includes a plurality of jack sense modules coupled to the plurality of video output pins, a processing module functions to: enable one or more of the plurality of jack sense modules to determine a video connection to the SOC, enable a video decoder in a first mode when the video connection is of a first type, and enable the video decoder in a second mode when the video connection is of a second type
Abstract:
A controlled sampling module samples an input signal from an input device and a reference signal. The controlled sampling module includes a plurality of sample capacitors, a switching network, and a switch control module for controlling the switching network. The switching network couples a first capacitor of the plurality of capacitors to the reference signal during a first phase, and to the input signal during a second phase, such that a charge on the first capacitor remaining at an end of the first phase is cancelled during the second phase.
Abstract:
A system and method for sensing the temperature of a device. This includes the establishment of a programmable current from an on-chip source, which in turn is used to produce a temperature dependent voltage from a temperature dependent resistive device. The temperature dependent resistive device is thermally coupled to a device for which the temperature is to be sensed. The temperature dependent voltage produced is converted to a digital value and equated to the temperature of the device.
Abstract:
A line driver having variable impedance termination includes an impedance, a 1st variable feedback, a 2nd variable feedback, a summing module and a gain module. The 1st and 2nd variable feedbacks provide feedback based on the desired impedance for the particular application. The summing module is operably coupled to sum the 1st variable feedback, the 2nd variable feedback and a signal to produce a resultant signal. The gain module is operably coupled to receive the resultant signal and to amplify the signal to produce a gained signal. The output of the gain module is operably coupled to the impedance wherein the other node of the impedance provides the output of the line driver. To provide the feedback, the 1st variable feedback is operably coupled to the output of the gain module and the summing module and the 2nd variable feedback is operably coupled to the output of the line driver and the summing module.
Abstract:
An audio output circuit includes an on-chip left channel amplifier module, an on-chip center channel amplifier module, and an on-chip right channel amplifier module. A left channel IC pin is operably coupled to an output of the on-chip left channel amplifier module. A right channel IC pin is operably coupled to an output of the on-chip right channel amplifier module. A center channel IC pin is operably coupled to an output of the on-chip center channel amplifier module. A center channel feedback IC pin is operably coupled to an input of the on-chip center channel amplifier module to provide a feedback loop. A left jack connection is operably coupled to the left channel IC pin. A right jack connection is operably coupled to the right channel IC pin. A jack return connection coupled to the center feedback IC pin. An inductor has a first node coupled to the jack return connection and a second node coupled to the center channel IC pin.
Abstract:
An audio output circuit includes an on-chip left channel amplifier module, an on-chip center channel amplifier module, and an on-chip right channel amplifier module. A left channel IC pin is operably coupled to an output of the on-chip left channel amplifier module. A right channel IC pin is operably coupled to an output of the on-chip right channel amplifier module. A center channel IC pin is operably coupled to an output of the on-chip center channel amplifier module. A center channel feedback IC pin is operably coupled to an input of the on-chip center channel amplifier module to provide a feedback loop. A left jack connection is operably coupled to the left channel IC pin. A right jack connection is operably coupled to the right channel IC pin. A jack return connection coupled to the center feedback IC pin. An inductor has a first node coupled to the jack return connection and a second node coupled to the center channel IC pin.
Abstract:
A mixing module includes a plurality of switched sample modules operably for generating a corresponding plurality of samples of an analog input signal in response to a control signal. A control module generates a mixing sequence and a control signal based on the mixing sequence, the control signal including a sequence of sample positions at a sampling clock rate and a sequence of scale factors, the sequence of scale factors based on an oscillation, wherein the sampling clock has a sample period and wherein the sequence of sample positions repeats at a sample position period greater than a sample interval, the sample interval equal to the sample period times the number of the plurality of switched sample circuits.