Abstract:
An audio output circuit includes an on-chip left channel amplifier module, an on-chip center channel amplifier module, and an on-chip right channel amplifier module. A left channel IC pin is operably coupled to an output of the on-chip left channel amplifier module. A right channel IC pin is operably coupled to an output of the on-chip right channel amplifier module. A center channel IC pin is operably coupled to an output of the on-chip center channel amplifier module. A center channel feedback IC pin is operably coupled to an input of the on-chip center channel amplifier module to provide a feedback loop. A left jack connection is operably coupled to the left channel IC pin. A right jack connection is operably coupled to the right channel IC pin. A jack return connection coupled to the center feedback IC pin. An inductor has a first node coupled to the jack return connection and a second node coupled to the center channel IC pin.
Abstract:
A system-on-a-chip integrated circuit includes a multimedia module that produces rendered output data and a high-speed interface. A processing module generates output multimedia data in accordance with at least a portion of a multimedia application in response to input multimedia data received from either the multimedia module or the high-speed interface. The output multimedia data is provided to either the multimedia module or the high-speed interface. An on-chip DC-to-DC converter converts a battery voltage into a supply voltage that is coupled to the multimedia module, the high-speed interface, and/or the processing module.
Abstract:
A method for signal strength detection begins by comparing a signal strength representation of a signal with a signal strength representation of a reference signal. The method continues by adjusting, when the signal strength representation of the signal compares unfavorably with the signal strength representation of the reference signal, at least one of the signal strength representation of the signal and the signal strength representation of the reference signal until the signal strength representation of the signal compares favorably with the signal strength representation of the reference signal. The method continues by determining signal strength of the signal based on the adjusting of the signal strength representation of the signal and signal strength of the reference signal.
Abstract:
An audio output circuit includes a DAC module, a line out circuit, and a headphone amplifier circuit. The digital to analog conversion (DAC) module is coupled to convert an audio component of digitized multimedia data into an analog audio signal. The line out circuit is coupled to amplify the analog audio signal based on a line out volume setting. The headphone amplifier is coupled to amplify the analog audio signal based on a volume setting to produce an amplified analog audio signal.
Abstract:
A radio record module includes a radio data system (RDS) decoder module, that decodes a received RDS signal, that has an associated audio signal, into received RDS data. A record module produces a digital data file from the digital audio signal in response to a record signal. A catalog generation module generates catalog data associated with the digital audio file, the catalog data including an RDS parameter of the received RDS data. A memory module stores the digital audio file and the catalog data.
Abstract:
A level shifter includes a first level shift module for producing a shifted signal by adjusting a direct current (DC) level of an input signal by a first bias voltage having a first polarity. A second level shift module produces an output signal by adjusting a DC level of the shifted signal by a second bias voltage having a second polarity. The first polarity is opposite to the second polarity and the sum of the first bias voltage and the second bias voltage is a non-zero voltage.
Abstract:
A current threshold circuit includes a series impedance, a reference voltage source, and a comparison module. The series impedance couples an output of a current source to a load, wherein impedance of the series impedance is substantially less than impedance of the load. The reference voltage source is operably coupled to produce a reference voltage differential. The comparison module is operably coupled to compare the reference voltage differential with a differential voltage of the series impedance, wherein the comparison module generates an excessive current indication when the differential voltage of the series impedance compares unfavorably to the reference voltage differential.
Abstract:
An amplifier circuit uses low threshold voltage devices for mid rail response in low voltage applications, but uses a high threshold voltage device at an output stage of the amplifier to generate an output from the amplifier.
Abstract:
Computationally efficient DTMF detection methods and apparatus are presented that meet all of the ITU recommendations using the modified non-uniform DFT. The system of the present invention employs a high band filter block and two low band filter blocks to detect power at the 8 DTMF tones. The frame length of the high band filter blocks is one half the length of the low band filter blocks. The frame lengths are chosen to meet the ITU frequency selectivity requirements for all DTMF frequencies. The frames of the two low band filter blocks are staggered to produce outputs alternately, and are aligned with respect to the frame of the high band filter block to produce low band filter block outputs that coincided with the high band filter block outputs without the need for signal buffering. A system of power level tests are employed in conjunction with a system of timing tests to ensure that all ITU timing and frequency constraints are met. The present invention requires no buffering of input samples, and can perform DTMF decoding of 24 telephone channels of a T1 time-division multiplexed communication line, using a single fixed-point commercially available digital signal processor.
Abstract:
Computationally efficient DTMF detection methods and apparatus are presented that meet all of the ITU recommendations using the modified non-uniform DFT. The system of the present invention employs a high band filter block and two low band filter blocks to detect power at the 8 DTMF tones. The frame length of the high band filter blocks is one half the length of the low band filter blocks. The frame lengths are chosen to meet the ITU frequency selectivity requirements for all DTMF frequencies. The frames of the two low band filter blocks are staggered to produce outputs alternately, and are aligned with respect to the frame of the high band filter block to produce low band filter block outputs that coincided with the high band filter block outputs without the need for signal buffering. A system of power level tests are employed in conjunction with a system of timing tests to ensure that all ITU timing and frequency constraints are met. The present invention requires no buffering of input samples, and can perform DTMF decoding of 24 telephone channels of a T1 time-division multiplexed communication line, using a single fixed-point commercially available digital signal processor.