摘要:
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a process for forming solid particles is provided. The method includes providing a first suspension of solid and/or liquid particles containing at least one group IIIA element. A material may be added to substantially increase the melting point of at least one set of group IIIA-containing particles in the suspension into higher-melting solid particles comprising an alloy of the group IIIA element and at least a part of the added material. The suspension may be deposited onto a substrate to form a precursor layer on the substrate and the precursor layer is reacted in a suitable atmosphere to form a film.
摘要:
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a method is provided for bandgap grading in a thin-film device using such particles. The method may be comprised of providing a bandgap grading material comprising of an alloy having: a) a IIIA material and b) a group IA-based material, wherein the alloy has a higher melting temperature than a melting temperature of the IIIA material in elemental form. A precursor material may be deposited on a substrate to form a precursor layer. The precursor material comprising group IB, IIIA, and/or VIA based particles. The bandgap grading material of the alloy may be deposited after depositing the precursor material. The alloy in the grading material may react after the precursor layer has begun to sinter and thus maintains a higher concentration of IIIA material in a portion of the compound film that forms above a portion that sinters first.
摘要:
A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-containing vapor is disclosed. In one embodiment, the method includes forming a first layer of a first precursor material over a surface of a substrate, wherein the precursor material comprises group IB-chalcogenide and/or group IIIA-chalcogenide particles. The method may include forming at least a second layer of a second precursor material over the first layer, wherein the second precursor material comprises group IB-chalcogenide and/or group IIIA-chalcogenide particles and wherein the second precursor material has a chalcogen content greater than that of the first material. The method may also include heating the first layer and the second layer in a suitable atmosphere to a temperature sufficient to react the particles and to release at least the surplus amount of chalcogen from the chalcogenide particles, wherein the surplus amount of chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form the group IB-IIIA-chalcogenide film at a desired stoichiometric ratio
摘要:
Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
摘要:
Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, a solar cell is provided that comprises of a substrate, a back electrode formed over the substrate, a p-type semiconductor thin film formed over the back electrode, an n-type semiconductor thin film formed so as to constitute a pn junction with the p-type semiconductor thin film, and a transparent electrode formed over the n-type semiconductor thin film. The p-type semiconductor thin film results by processing a dense film formed from a plurality of microflakes having a material composition containing at least one element from Groups IB, IIIA, and/or VIA, wherein the dense film has a void volume of about 26% or less. The dense film may be a substantially void free film.
摘要:
A high-throughput method of forming a semiconductor precursor layer by use of low-melting chalcogenides is disclosed. In one embodiment, a method is provided that comprises of forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein amounts of the group IB or IIIA element and amounts of chalcogen in the particles are selected to be at a desired stoichiometric ratio for the group IB or IIIA chalcogenide that provides a melting temperature less than a highest melting temperature found on a phase diagram for any stoichiometric ratio of elements for the group IB or IIIA chalcogenide. The method includes disposing the particle precursor material over a surface of a substrate and heating the particle precursor material to a temperature sufficient to react the particles to form a film of a group IB-IIIA-chalcogenide compound. The method may include at least partially melting the particles.
摘要:
A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-containing vapor is disclosed. In one embodiment, the method comprises forming a precursor material comprising group IB and/or group IIIA particles of any shape. The method may include forming a precursor layer of the precursor material over a surface of a substrate. The method may further include heating the particle precursor material in a substantially oxygen-free chalcogen atmosphere to a processing temperature sufficient to react the particles and to release chalcogen from the chalcogenide particles, wherein the chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form a group IB-IIIA-chalcogenide film at a desired stoichiometric ratio. The chalcogen atmosphere may provide a partial pressure greater than or equal to the vapor pressure of liquid chalcogen in the precursor layer at the processing temperature.
摘要:
Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices. In one embodiment, at least one set of the particles in the ink may be inter-metallic flake particles (microflake or nanoflake) containing at least one group IB-IIIA inter-metallic alloy phase.
摘要:
Materials and devices are provided for high-throughput printing of nanostructured semiconductor precursor layer. In one embodiment, a material is provided that comprises of a plurality of microflakes having a material composition containing at least one element from Groups IB, IIIA, and/or VIA. The microflakes may be created by milling precursor particles characterized by a precursor composition that provides sufficient malleability to form a planar shape from a non-planar starting shape when milled, and wherein overall amounts of elements from Groups IB, IIIA and/or VIA contained in the precursor particles combined are at a desired stoichiometric ratio of the elements. It should also be understood that other flakes such as but not limited to nanoflakes may also be used to form the precursor material.
摘要:
Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.