Abstract:
Techniques and examples pertaining to combined wireless charging and position tracking are described. A method may involve a processor of an apparatus operating in a first mode to effect wireless charging via at least a first coil of a plurality of coils of the apparatus. The method may also involve the processor operating in a second mode to effect position tracking via at least a second coil of the plurality of coils of the apparatus.
Abstract:
Techniques and examples pertaining to combined wireless charging and position tracking are described. A method may involve a processor of an apparatus operating in a first mode to effect wireless charging via at least a first coil of a plurality of coils of the apparatus. The method may also involve the processor operating in a second mode to effect position tracking via at least a second coil of the plurality of coils of the apparatus.
Abstract:
A neural network based method places flexible blocks on a chip canvas in an integrated circuit (IC) design. The neural network receives an input describing geometric features of a flexible block to be placed on the chip canvas. The geometric features includes an area size and multiple aspect ratios. The neural network generates a probability distribution over locations on the chip canvas and the aspect ratios of the flexible block. Based on the probability distribution, a location on the chip canvas is selected for placing the flexible block with a chosen aspect ratio.
Abstract:
A virtual reality (VR) system including a virtual reality display and a virtual reality host is provided. The virtual reality display is arranged for displaying a virtual environment for a virtual reality user. The virtual reality host is arranged for performing a virtual reality session to generate the virtual environment using the virtual reality display and creating a virtual interface to sync and interact with a source unit, wherein when the source unit receives an incoming event, the virtual reality host receives a notification regarding the incoming event from the source unit and provides the notification to the virtual interface to generate an alert for the notification to the screen of the virtual reality display in the virtual environment for the virtual reality user.
Abstract:
A sensor includes a ferromagnetic shield, at least one sensor coil disposed around an exterior of the ferromagnetic shield, and an electronics module within the ferromagnetic shield. The electronics module is configured to determine the position and/or orientation of the sensor based at least in part on a measurement of a signal induced in the at least one sensor coil.
Abstract:
A head-mount display (HMD) and variations thereof are described. An HMD may include a mobile device having a display unit, a camera, a light source and a processing unit that controls operations of the display unit, camera and light source. The processing unit receives data associated with one or more optical images captured by the camera, and renders a visual image displayable by the display unit. The HMD may also include an eyewear piece having a holder, one or more lenses and a reflective unit. The holder is wearable by a user and holds the mobile device in front of eyes of the user. The user can view the display unit through the one or more lenses. The reflective unit reflects an image of at least an eye of the user. The camera is oriented to capture the reflected image of the eye through the reflective unit.
Abstract:
A head-mounted display (HMD) may include a mobile device that includes a display unit, at least one sensing unit and a processing unit. The at least one sensing unit may be configured to detect a presence of an object. The processing unit may be configured to receive data associated with the detecting from the at least one sensing unit, and determine one or more of a position, an orientation and a motion of the object based at least in part on the received data. The HMD may also include an eyewear piece that includes a holder and a field of view (FOV) enhancement unit. The holder may be wearable by a user on a forehead thereof to hold the mobile device in front of eyes of the user. The FOV enhancement unit may be configured to enlarge or redirect a FOV of the at least one sensing unit.
Abstract:
A head-mount display (HMD) and variations thereof are described. An HMD may include a mobile device having a display unit, a camera, a light source and a processing unit that controls operations of the display unit, camera and light source. The processing unit receives data associated with one or more optical images captured by the camera, and renders a visual image displayable by the display unit. The HMD may also include an eyewear piece having a holder, one or more lenses and a reflective unit. The holder is wearable by a user and holds the mobile device in front of eyes of the user. The user can view the display unit through the one or more lenses. The reflective unit reflects an image of at least an eye of the user. The camera is oriented to capture the reflected image of the eye through the reflective unit.