Abstract:
A system and associated method receives, by a database coupled to a communication network, patient medical data from multiple data sources including data retrieved from implantable medical devices implanted in patients. A processor accesses the database to generate a dataset from the medical data having at least one data characteristic matching a corresponding data characteristic of a patient group of at least one patient. At least one subset of the dataset is identified that had a therapy intervention subsequent to a time point that the subset had the matching data characteristic(s). An outcome of the subset is determined and a predictive outcome for the patient group is produced based on the outcome of at least one subset.
Abstract:
A system and associated method receives, by a database coupled to a communication network, patient medical data from multiple data sources including data retrieved from implantable medical devices implanted in patients. A processor accesses the database to generate a dataset from the medical data having at least one data characteristic matching a corresponding data characteristic of a patient group of at least one patient. At least one subset of the dataset is identified that had a therapy intervention subsequent to a time point that the subset had the matching data characteristic(s). An outcome of the subset is determined and a predictive outcome for the patient group is produced based on the outcome of at least one subset.
Abstract:
A method for identifying oversensing in implantable medical devices (IMDs), such as implantable cardioverter defibrillators (ICDs), is described. A near-field electrogram signal and a far-field electrogram signal are obtained via a near-field electrode pair and a far-field electrode pair. The near-field electrogram signal is compared to the far-field electrogram signal and a determination of whether oversensing exists is made based on the comparison. In some instances, a scheduled therapy is withheld in response to determining that oversensing exists.
Abstract:
A method for identifying oversensing in implantable medical devices (IMDs), such as implantable cardioverter defibrillators (ICDs), is described. A near-field electrogram signal and a far-field electrogram signal are obtained via a near-field electrode pair and a far-field electrode pair. The near-field electrogram signal is compared to the far-field electrogram signal and a determination of whether oversensing exists is made based on the comparison. In some instances, a scheduled therapy is withheld in response to determining that oversensing exists.