-
公开(公告)号:US11628298B2
公开(公告)日:2023-04-18
申请号:US16410117
申请日:2019-05-13
Applicant: Medtronic, Inc.
Inventor: Hyun J. Yoon , Michael L. Ellingson , Wade M. Demmer , Jonathan D. Edmonson , Matthew J. Hoffman , Ben W. Herberg , James D. Reinke , Todd J. Sheldon , Paul R. Solheim , Alison M. Seacord
Abstract: Implantable medical devices automatically switch from a normal mode of operation to an exposure mode of operation and back to the normal mode of operation. The implantable medical devices may utilize hysteresis timers in order to determine if entry and/or exit criteria for the exposure mode are met. The implantable medical devices may utilize additional considerations for entry to the exposure mode such as a confirmation counter or a moving buffer of sensor values. The implantable medical devices may utilize additional considerations for exiting the exposure mode of operation and returning to the normal mode, such as total time in the exposure mode, patient position, and high voltage source charge time in the case of devices with defibrillation capabilities.
-
公开(公告)号:US10286209B2
公开(公告)日:2019-05-14
申请号:US15142814
申请日:2016-04-29
Applicant: MEDTRONIC, INC.
Inventor: Hyun J. Yoon , Michael L. Ellingson , Wade M. Demmer , Jonathan D. Edmonson , Matthew J. Hoffman , Ben W. Herberg , James D. Reinke , Todd J. Sheldon , Paul R. Solheim , Alison M. Seacord
Abstract: Implantable medical devices automatically switch from a normal mode of operation to an exposure mode of operation and back to the normal mode of operation. The implantable medical devices may utilize hysteresis timers in order to determine if entry and/or exit criteria for the exposure mode are met. The implantable medical devices may utilize additional considerations for entry to the exposure mode such as a confirmation counter or a moving buffer of sensor values. The implantable medical devices may utilize additional considerations for exiting the exposure mode of operation and returning to the normal mode, such as total time in the exposure mode, patient position, and high voltage source charge time in the case of devices with defibrillation capabilities.
-
公开(公告)号:US11724111B2
公开(公告)日:2023-08-15
申请号:US17234746
申请日:2021-04-19
Applicant: MEDTRONIC, INC.
Inventor: Hyun J. Yoon , Wade M. Demmer , Matthew J. Hoffman , Robert A. Betzold , Jonathan D. Edmonson , Michael L. Ellingson , Ben W. Herberg , Juliana E. Pronovici , James D. Reinke , Todd J. Sheldon , Paul R. Solheim
CPC classification number: A61N1/3718 , A61N1/3931 , A61N1/3684 , A61N1/3688 , A61N1/3956
Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
-
公开(公告)号:US20230061204A1
公开(公告)日:2023-03-02
申请号:US17882214
申请日:2022-08-05
Applicant: MEDTRONIC, INC.
Inventor: Jonathan D. Edmonson , Apurv Agarwal , Helen W. Vogl , Henry Mei , Diva U. Bhattarai
Abstract: An implanted medical device is prepared for a magnetic resonance imaging (MRI) scan by being programmed into an MRI mode when deemed appropriate by an external device implementing an MRI mode control application. An MRI technologist or other user may use the external device to screen the patient and implanted medical device for the MRI scan and enable the MRI mode at the implanted medical device when it is deemed appropriate in the MRI mode control application. Therapy parameters for the MRI mode may be determined on the basis of information about the device and patient, and those therapy parameters may be programmed into the implanted medical device upon enabling the MRI mode. The MRI technologist or other user may use the external device to disable the MRI mode and return to normal operation once the MRI scan is complete.
-
公开(公告)号:US10143847B1
公开(公告)日:2018-12-04
申请号:US15655043
申请日:2017-07-20
Applicant: Medtronic, Inc.
Inventor: Jonathan D. Edmonson , Matthew J. Hoffman , Wei Jiang , Yanzhu Zhao , Srikara V. Peelukhana , Wei Gan
Abstract: In some examples, this disclosure describes a method for identifying a position within a patient for a first implantable medical device (IMD) to be implanted to facilitate tissue conductive communication (TCC) between the first IMD and a second IMD implanted within the patient. In some examples, the method includes storing model data that associates patient parameter data and second IMD position data with first IMD positions based on TCC communication performance, receiving patient parameter data indicating one or more anatomical or physiological parameters of the patient, receiving second IMD position data, performing analysis by at least one of comparing the model data to the patient parameter data and the second IMD position data, performing real-time computer simulations, or a combination of comparing and performing simulations, and outputting to a user an indication of the position for the first IMD to be implanted within the patient based on the analysis.
-
公开(公告)号:US11938326B2
公开(公告)日:2024-03-26
申请号:US17675508
申请日:2022-02-18
Applicant: Medtronic, Inc.
Inventor: Hyun J. Yoon , Wade M. Demmer , Matthew J. Hoffman , Robert A. Betzold , Jonathan D. Edmonson , Michael L. Ellingson , Mark K. Erickson , Ben W. Herberg , Juliana E. Pronovici , James D. Reinke , Todd J. Sheldon , Paul R. Solheim
CPC classification number: A61N1/3718 , A61N1/3684 , A61N1/3688 , A61N1/3925 , A61N1/39622
Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
-
公开(公告)号:US20170296827A1
公开(公告)日:2017-10-19
申请号:US15487713
申请日:2017-04-14
Applicant: MEDTRONIC, INC.
Inventor: Hyun J. Yoon , Wade M. Demmer , Matthew J. Hoffman , Robert A. Betzold , Jonathan D. Edmonson , Michael L. Ellingson , Ben W. Herberg , Juliana E. Pronovici , James D. Reinke , Todd J. Sheldon , Paul R. Solheim
CPC classification number: A61N1/3718 , A61N1/3684 , A61N1/3688 , A61N1/3931 , A61N1/3956
Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
-
公开(公告)号:US20230181912A1
公开(公告)日:2023-06-15
申请号:US17989599
申请日:2022-11-17
Applicant: MEDTRONIC, INC.
Inventor: Jonathan D. Edmonson , Michael W. Heinks
CPC classification number: A61N1/3718 , A61N1/37217 , A61N1/36542
Abstract: Implantable medical devices include a first sensor for detecting a magnetic field that indicates an exposure mode of operation is appropriate. The implantable medical devices include a second sensor for detecting whether an MRI characteristic is present that indicates whether MRI or non-MRI post exposure diagnostics and other actions should be implemented and may also indicate whether the exposure mode should be MRI or non-MRI specific. An MRI post exposure diagnostic may perform pacing capture threshold tests and the post exposure pacing amplitude output may be kept at a higher than normal level. The second sensor may be an overvoltage clamp circuit of a telemetry coil that indicates whether an overvoltage condition on the telemetry coil is occurring to indicate whether an MRI characteristic is present. The second sensor may be a second threshold magnetic sensor, an accelerometer, or a microphone to indicate whether an MRI characteristic is present.
-
公开(公告)号:US20220409883A1
公开(公告)日:2022-12-29
申请号:US17848174
申请日:2022-06-23
Applicant: MEDTRONIC, INC.
Inventor: Brian J. Sorenson , Simon E. Goldman , Gregory P. Shipe , Leroy L. Perz , Stephanie L. Sanford , Jonathan D. Edmonson
Abstract: Implantable medical systems that include an implantable medical lead coupled to an implantable medical device for purposes of electrical stimulation therapy and/or sensing of physiological signals includes at least one twisted pair of conductors within the implantable medical lead. The twisted pair corresponds to a stimulation or sensing channel of the implantable medical device. The twisted pair provides attenuation of electromagnetic interference noise that is present at the lead or lead extension. The twisted pair may be present in a lumen of the implantable medical lead or encapsulated by the lead body. The twisted pair, along with any other conductors of the lead, may be of a linear configuration or may be coiled.
-
公开(公告)号:US11253707B2
公开(公告)日:2022-02-22
申请号:US16600751
申请日:2019-10-14
Applicant: Medtronic, Inc.
Inventor: Hyun J. Yoon , Wade M. Demmer , Matthew J. Hoffman , Robert A. Betzold , Jonathan D. Edmonson , Michael L. Ellingson , Mark K. Erickson , Ben W. Herberg , Juliana E. Pronovici , James D. Reinke , Todd J. Sheldon , Paul R. Solheim
Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
-
-
-
-
-
-
-
-
-