Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
Abstract:
Novel tools and techniques are provided for implementing protection of at least one tissue layer of a medical device or implant during crimping of the medical device or implant. In various embodiments, an implant tissue protection tool may include an outer portion configured to surround one or more outer segments of at least one tissue layer of a medical device to be implanted into a body of a subject and at least one protrusion (which may be affixed to a surface of the outer portion) configured to minimize or prevent occurrence (or likelihood of occurrence) of the at least one tissue layer (in some cases, leaflet material, or the like) of the medical device passing through at least one opening defined by a frame structure of the medical device during crimping of the medical device by a crimping device in preparation for implantation into the body of the subject.
Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
Abstract:
Prosthetic heart valves each includes a link extending along a link axis and an axial frame. The axial frame includes a plurality of struts comprising a plurality of inner struts pivotally attached to a plurality of outer struts at a plurality of pivot nodes. A first pivot node of the plurality of pivot can be attached to the link and a second pivot node of the plurality of pivot nodes can move relative to the link along the link axis. Methods of radially expanding a prosthetic heart valve can comprise radially expanding the radially expandable frame from a radially retracted orientation to a radially expanded orientation while the second pivot node axially translates relative to the link.
Abstract:
Novel tools and techniques are provided for implementing protection of at least one tissue layer of a medical device or implant during crimping of the medical device or implant. In various embodiments, an implant tissue protection tool may include an outer portion configured to surround one or more outer segments of at least one tissue layer of a medical device to be implanted into a body of a subject and at least one protrusion (which may be affixed to a surface of the outer portion) configured to minimize or prevent occurrence (or likelihood of occurrence) of the at least one tissue layer (in some cases, leaflet material, or the like) of the medical device passing through at least one opening defined by a frame structure of the medical device during crimping of the medical device by a crimping device in preparation for implantation into the body of the subject.
Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
Abstract:
A prosthetic heart valve includes an annular stent having an inflow portion comprising a plurality of rows of angled inflow struts, an outflow portion comprising a row of angled outflow struts, and a transition portion comprising an axial strut and a commissure post, a prosthetic valve including a leaflet structure positioned within the stent and secured to the at least one commissure post, and a tissue bumper configured to reduce abrasion caused by contact by the leaflet structure with the annular stent. The tissue bumper comprises a tissue strip wrapped around at least one angled outflow strut in the row of angled outflow struts, the axial strut, and a portion of a first row of angled struts of the plurality of rows of angled inflow struts.
Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
Abstract:
A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.