摘要:
A new, performer played, real time, multitonal, multitimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the note generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A new, performer played, real time, multitonal, multimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the notes generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A new, performer played, real time, multitonal, multimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the notes generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A new, performer played, real time, multitonal, multimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the notes generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A new, performer played, real time, multitional, multimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the notes generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A new, performer played, real time, multitonal, multimbral musical instrument consists of speed and force sensitive keys in which time domain multiplexing is used to find and associate one and only one tone generator, not otherwise busy, with any key that is depressed. The sound generator disclosed can provide very realistic simulations of the flute, oboe, trumpet, French horn, trombone through the provision of various types of modulations in amplitude and frequency of the various partials, as is characteristic of each instrument simulated, and filtered noise. Glissandi are provided from one note to another and are controlled from the pair of keys involved by the relative pressure with which they are depressed. For the nonpercussive tonalities, the speed with which a key is depressed, which is determined by differentiating the force, may be used to cause the attack transient to behave in a manner very characteristic of the instrument being simulated. The force with which a key is depressed is determined from the rate of rise of the potential across a capacitive keying system excited through a resistor. Percussive sound generators are provided also; the intensity of the note generated by these generators is determined by the speed with which the associated key is depressed. The force with which the associated key is depressed can be used to determine the rate of automatic repetition of the note. The speed with which a key is depressed can also be used for nonpercussive instruments to alter the character of the attack transient.
摘要:
A non-contact tonometer of a type having a cylinder, a piston received by the cylinder for axially directed movement relative to the cylinder, and a driven member for causing the piston to move relative to the cylinder in a compression stroke to generate a fluid pulse for transfiguring a cornea is improved by decoupling the piston from the driven member to eliminate the need for critical alignment between the driven member and piston and allow the piston to be self-aligning with respect to the cylinder.
摘要:
An apparatus for calibrating a non-contact tonometer comprises an electronic eye having a damped pressure sensor for receiving a tonometer air pulse and providing a pressure signal in response to the air pulse, and an applanation simulator connected to the pressure sensor for providing a pseudo-applanation event when the pressure signal reaches a predetermined level corresponding to a known IOP measurement standard. A method for calibrating a non-contact tonometer using the inventive calibration apparatus is also described.
摘要:
A hand-held non-contact tonometer comprises a housing having a handle portion for enclosing a rechargeable D.C. power source and an upper head portion for enclosing alignment and tonometric measurement systems of the tonometer. An operator can directly view the patient's eye along an optical axis extending through the head portion of the housing, and an instructional display image is superimposed with the directly viewed image of the eye to guide the operator in X-Y-Z alignment based on data supplied by an afocal position detection system. A transceiver for wireless data exchange and a recharging support stand are also provided.
摘要:
A fluid pump system of a non-contact tonometer is numerically simulated through its compression stroke by a simulation software program. System dynamic behavior is modeled for a variety of piston diameters, whereby an optimal piston diameter or range of piston diameters is selected in view of stoke length limitations and target applanation pressure requirements.