摘要:
A process for separately recovering zinc and lead values from zinc and lead containing sulphidic ore which also contains iron comprises subjecting ground ore to a first flotation step to float an initial lead concentrate containing zinc and produce zinc and iron containing tailings. The zinc and iron containing tailings are subjected to a second flotation step to float an initial zinc concentrate containing iron and also produce tailings. The initial zinc concentrate is subjected to a third flotation step to float a further zinc concentrate containing iron and also produce zinc and iron containing tailings. The zinc and iron containing tailings from the third flotation step and at least a lead and zinc containing portion of the initial lead concentrate are leached in a first leach step under oxidizing conditions at a temperature in the range of from about 130.degree. to about 170.degree. C. in aqueous sulphuric acid solution with a stoichiometric excess of sulphuric acid relative to the zinc content of from about 50 to about 150% so as to give a terminal acidity of from about 50 to about 80 g/L to produce a lead-containing residue and a first leach solution containing zinc and iron. The lead containing residue is separated from the first leach solution and the first leach solution is treated with the further zinc concentrate or calcine produced therefrom by roasting to dissolve zinc therefrom and precipitate a substantial amount of dissolved iron, thereby producing an iron containing residue and a second leach solution containing zinc. The iron containing residue is separated from the second leach solution, and the second leach solution is treated to recover zinc.
摘要:
A process for recovering zinc and iron from zinc- and iron-containing sulphidic material, which also contains lead and silver, in which the sulphidic material is leached under oxidizing conditions in a two stage countercurrent pressure leach to produce a zinc-containing solution from which zinc can be recovered by conventional means such as electrowinning, followed by a reducing leach to produce a lead- and silver-bearing product containing substantially all of the lead and a substantial portion of the silver present in the zinc-containing sulphidic materials, and a high strength iron bearing solution having the iron in the ferrous state from which substantially pure, saleable or environmentally acceptable iron residue in the form of hematite which contains the majority of the soluble iron present in the zinc-containing sulphidic materials is produced.
摘要:
A process for the recovery of zinc from zinc-containing sulphidic material which also contains iron and from zinc oxide containing material, at least one of the materials containing lead and/or silver values. The process includes leaching zinc-containing sulphidic material and zinc oxide containing material under pressurized oxidizing conditions at a temperature in the range of from about 130.degree. to about 170.degree. C. in aqueous sulphuric acid solution with a stoichiometric excess of sulphuric acid relative to the zinc content of the materials of from about 40 to about 100% to produce a residue containing a major proportion of lead and/or silver values and a leach solution containing a major proportion of the zinc and iron. The residue is separated from the leach solution and treated to recover lead and/or silver values. The pH of the solution is then raised to neutralize the acid in an iron removal step to cause precipitation of at least some of the dissolved iron from the leach solution as an iron compound. The precipitated iron compound is separated from the remaining leach solution, and the remaining leach solution is treated to recover zinc.
摘要:
A process for producing ultrafine cobalt powder includes providing an aqueous solution of cobalt ammine carbonate, with the concentration of cobalt ions being in the range of from about 1 to about 20 grams per liter (gpl). The solution is heated to drive off ammonia and carbon dioxide and precipitate ultrafine cobalt oxide. The cobalt oxide precipitate is then separated from the solution and heated in a reducing atmosphere to reduce the cobalt oxide to ultrafine cobalt powder.