Abstract:
This invention relates to treated geothermal brine compositions containing reduced concentrations of iron, silica, and manganese compared to the untreated brines. Exemplary compositions contain a concentration of manganese less than 10 mg/kg, a concentration of silica ranging from less than 10 mg/kg, and a concentration of iron less than 10 mg/kg, and the treated geothermal brine is derived from a Salton Sea geothermal reservoir.
Abstract:
The subject invention provides safe, environmentally-friendly, compositions and methods for extracting minerals and/or metals from ore. More specifically, the subject invention provides for bioleaching using a composition comprising one or more biosurfactant-producing microorganisms and/or microbial growth by-products. In specific embodiments, the composition comprises biosurfactant-producing yeasts and/or their growth by-products.
Abstract:
An autoclave for pressure oxidation of a slurried material including at least one sulfide material, and a method. The autoclave includes a pressure vessel for receiving the slurried material. The pressure vessel includes compartments being arranged horizontally one after the another and separated by dividers. Each divider is provided with an upper edge or at least one opening that defines level of the slurried material in the compartment. An inlet is arranged for feeding oxygen-containing gas into the pressure vessel. An agitator arrangement is arranged for agitating the slurried material in at least one of the compartments, the agitator arrangement including at least an upper impeller and a lower impeller, the impellers arranged along a vertically aligned shaft. The upper impeller is arranged at a height above the mid-level of one of the compartments, and the upper impeller is an upward pumping axial or mixed flow impeller.
Abstract:
Provided is a method of inhibiting degradation of an extractant by an anhydrous environment avoiding and metal stripping, the method including the steps of: (a) stopping the addition of soda ash (Na2CO3) to an extracting reaction tank; (b) starting solution recirculation and stopping solvent recirculation of a settler; (c) supplying a solvent from a loaded organic tank to a scrubbing reaction tank, in which the scrubbing reaction tank, stripping reaction tank and extracting reaction tank are connected for circulation and operating stirrers of the scrubbing reaction tank, stripping reaction tank and extracting reaction tank; (d) supplying a sulfuric acid solution having a controlled concentration with a diluting solution to the stripping reaction tank; (e) transferring the solvents of the settler, the loaded organic tank and all the pipes to the scrubbing reaction tank; and (f) stopping the step (e) and initiating solvent recirculation.
Abstract:
Provided is a method for inhibiting extractant degradation comprising preparing step, extracting step and scrubbing step, the method including: (a) the preparing step of a DSX solvent by adjusting the extractant concentration of the DSX solvent to a specific range; (b) the extracting step of metal included in the feed solution by adjusting the ratio of the organic (solvent) and an aqueous (solution) as a feed solution; (c) the scrubbing step of adjusting the zinc concentration of the solution using zinc sulfate; and (d) stripping step.
Abstract:
Provided is a method for inhibiting extractant degradation in the DSX process through the manganese extraction control, the method comprising: (a) stirring DSX solvent and DSX feed solution, which is a solution containing a valuable metal from which iron has been removed in an agitator, in which soda ash (Na2CO3) is further added to maintain a constant pH; and (b) scrubbing the manganese from the DSX solvent, extracted in step (a).
Abstract:
The present invention provides a method of recovering copper and zinc from an aqueous sulfate and chloride containing solution. In the first process step zinc and copper are simultaneous extracting with an extraction solution comprising a liquid chelating cation exchanger and a liquid anion exchanger. The extraction is followed by consecutive stripping stages. First the anionic species are washed from the organic phase with one or more aqueous solutions and finally the copper is stripped with an aqueous acidic solution.
Abstract:
The synthesis of nanoparticles of metals and metal oxides using plant seeds extract involves providing a solution comprising a metal ion; providing a plant seeds extract solution that comprises a reducing agent; and combining the metal ion solution and the plant extract solution while stirring at room temperature to produce metal nanoparticles. The plant extract is obtained from Trigonella foenum-graecum seeds, and the metal ion is selected from the group consisting of silver (Ag), gold (Au) and zinc (Zn).
Abstract:
Provided are methods method of recovering metal from an aqueous solution, the method comprising contacting an aqueous solution containing at least two metals selected from molybdenum, cobalt, nickel, zinc and iron with an organic solvent and an oxime-containing reagent composition at a predetermined pH, the predetermined pH selected to provide a high first metal extraction and a low second metal extraction; and separating the first metal from the solution.
Abstract:
This invention relates to treated geothermal brine compositions containing reduced concentrations of iron, silica, and manganese compared to the untreated brines. Exemplary compositions contain a concentration of manganese less than 10 mg/kg, a concentration of silica ranging from less than 10 mg/kg, and a concentration of iron less than 10 mg/kg, and the treated geothermal brine is derived from a Salton Sea geothermal reservoir.