摘要:
A method for detecting an object in a depth image includes determining a detection window covering a region in the depth image, wherein a location of the detection window is based on a location of a candidate pixel in the depth image, wherein a size of the detection window is based on a depth value of the candidate pixel and a size of the object. A foreground region in the detection window is segmented based on the depth value of the candidate pixel and the size of the object. A feature vector is determined based on depth values of the pixels in the foreground region and the feature vector is classified to detect the object.
摘要:
A method for detecting an object in a depth image includes determining a detection window covering a region in the depth image, wherein a location of the detection window is based on a location of a candidate pixel in the depth image, wherein a size of the detection window is based on a depth value of the candidate pixel and a size of the object. A foreground region in the detection window is segmented based on the depth value of the candidate pixel and the size of the object. A feature vector is determined based on depth values of the pixels in the foreground region and the feature vector is classified to detect the object.
摘要:
Objects in an image are classified by applying an appearance classifier to the image to determine candidates of the objects and statistics associated with the candidates, wherein the appearance classifier uses a set of windows, and the candidates are in selected windows. Then, a context classifier is applied only to the selected windows of the image to determine an identity, and location of objects in the image.
摘要:
A method tracks a moving object in a video acquired of a scene with a camera. A background model is maintained for each frame, and moving objects are detected according to changes in the background model. An object model is maintained for the moving object, and kernels are generated for the moving object. A mean-shift process is applied to each kernel in each frame to determine a likelihood of an estimated location of the moving object in each frame, according to the background models, the object model, and the mean shift kernels to track the moving object in the video.
摘要:
A pose of an object is estimated by first defining a set of pair features as pairs of geometric primitives, wherein the geometric primitives include oriented surface points, oriented boundary points, and boundary line segments. Model pair features are determined based on the set of pair features for a model of the object. Scene pair features are determined based on the set of pair features from data acquired by a 3D sensor, and then the model pair features are matched with the scene pair features to estimate the pose of the object.
摘要:
A structured light pattern including a set of patterns in a sequence is generated by initializing a base pattern. The base pattern includes a sequence of colored stripes such that each subsequence of the colored stripes is unique for a particular size of the subsequence. The base pattern is shifted hierarchically, spatially and temporally a predetermined number of times to generate the set of patterns, wherein each pattern is different spatially and temporally. A unique location of each pixel in a set of images acquired of a scene is determined, while projecting the set of patterns onto the scene, wherein there is one image for each pattern.
摘要:
A method constructs descriptors for a set of data samples and determines a distance score between pairs of subsets selected from the set of data samples. A d-dimensional feature vector is extracted for each sample in each subset of samples. The feature vector includes indices to the corresponding sample and properties of the sample. The feature vectors of each subset of samples are combined into a d×d dimensional covariance matrix. The covariance matrix is a descriptor of the corresponding subset of samples. Then, a distance score is determined between the two subsets of samples using the descriptors to measure a similarity between the descriptors.
摘要:
A method tracks a moving object in a video acquired of a scene with a camera. A background model is maintained for each frame, and moving objects are detected according to changes in the background model. An object model is maintained for the moving object, and kernels are generated for the moving object. A mean-shift process is applied to each kernel in each frame to determine a likelihood of an estimated location of the moving object in each frame, according to the background models, the object model, and the mean shift kernels to track the moving object in the video.
摘要:
A natural input image is upscaled, first by interpolation. Second, edges in the interpolated image are sharpened by a lion-parametric patch transform. The result is decomposed into an edge layer and a detail layer. Only pixels in the detail layer enhanced, and the enhanced detail layer is merged with the edge layer to produce a high resolution version of the input image.
摘要:
A method constructs descriptors for a set of data samples and determines a distance score between pairs of subsets selected from the set of data samples. A d-dimensional feature vector is extracted for each sample in each subset of samples. The feature vector includes indices to the corresponding sample and properties of the sample. The feature vectors of each subset of samples are combined into a d×d dimensional covariance matrix. The covariance matrix is a descriptor of the corresponding subset of samples. Then, a distance score is determined between the two subsets of samples using the descriptors to measure a similarity between the descriptors.