摘要:
A structured light pattern including a set of patterns in a sequence is generated by initializing a base pattern. The base pattern includes a sequence of colored stripes such that each subsequence of the colored stripes is unique for a particular size of the subsequence. The base pattern is shifted hierarchically, spatially and temporally a predetermined number of times to generate the set of patterns, wherein each pattern is different spatially and temporally. A unique location of each pixel in a set of images acquired of a scene is determined, while projecting the set of patterns onto the scene, wherein there is one image for each pattern.
摘要:
A structured light pattern including a set of patterns in a sequence is generated by initializing a base pattern. The base pattern includes a sequence of colored stripes such that each subsequence of the colored stripes is unique for a particular size of the subsequence. The base pattern is shifted hierarchically, spatially and temporally a predetermined number of times to generate the set of patterns, wherein each pattern is different spatially and temporally. A unique location of each pixel in a set of images acquired of a scene is determined, while projecting the set of patterns onto the scene, wherein there is one image for each pattern.
摘要:
A pose of an object is estimated by first defining a set of pair features as pairs of geometric primitives, wherein the geometric primitives include oriented surface points, oriented boundary points, and boundary line segments. Model pair features are determined based on the set of pair features for a model of the object. Scene pair features are determined based on the set of pair features from data acquired by a 3D sensor, and then the model pair features are matched with the scene pair features to estimate the pose of the object.
摘要:
A pose of an object is estimated by first defining a set of pair features as pairs of geometric primitives, wherein the geometric primitives include oriented surface points, oriented boundary points, and boundary line segments. Model pair features are determined based on the set of pair features for a model of the object. Scene pair features are determined based on the set of pair features from data acquired by a 3D sensor, and then the model pair features are matched with the scene pair features to estimate the pose of the object.
摘要:
A dynamic scene is reconstructed as depths and an extended depth of field video by first acquiring, with a camera including a lens and sensor, a focal stack of the dynamic scene while changing a focal depth. An optical flow between the frames of the focal stack is determined, and the frames are warped according to the optical flow to align the frames and to generate a virtual static focal stack. Finally, a depth map and a texture map for each virtual static focal stack is generated using a depth from defocus, wherein the texture map corresponds to an EDOF image.
摘要:
A pose of an object is determine by acquiring sets of images of the object by a camera, wherein the object has a thread arranged on a surface such that a local region of the object appears substantially spherical, wherein the camera is at a different point of view for each set, and wherein each image in each set is acquired while the scene is illuminated from a different direction. A set of features is extracted from each image, wherein the features correspond to points on the surface having normals towards the camera. A parametric line is fitted to the points for each image, wherein the line lies on a plane joining a center of the camera and an axis of the object. Then, geometric constraints are applied to lines to determine the pose of the object.
摘要:
A dynamic scene is reconstructed as depths and an extended depth of field video by first acquiring, with a camera including a lens and sensor, a focal stack of the dynamic scene while changing a focal depth. An optical flow between the frames of the focal stack is determined, and the frames are warped according to the optical flow to align the frames and to generate a virtual static focal stack. Finally, a depth map and a texture map for each virtual static focal stack is generated using a depth from defocus, wherein the texture map corresponds to an EDOF image.
摘要:
A visual hull for a 3D object is generated by using a set of silhouettes extracted from a set of images. First, a set of convex polyhedra is generated as a coarse 3D model of the object. Then for each image, the convex polyhedra are refined by projecting them to the image and determining the intersections with the silhouette in the image. The visual hull of the object is represented as union of the convex polyhedra.
摘要:
A visual hull for a 3D object is generated by using a set of silhouettes extracted from a set of images. First, a set of convex polyhedra is generated as a coarse 3D model of the object. Then for each image, the convex polyhedra are refined by projecting them to the image and determining the intersections with the silhouette in the image. The visual hull of the object is represented as union of the convex polyhedra.
摘要:
A hydraulic system, wherein an actuating cylinder and an accelerating cylinder each includes a piston, a rod, and a tube. When the rod of the actuating cylinder extends in an unloaded condition, a circuit is configured such that oil discharged from the bottom-side section of the accelerating cylinder is supplied to the bottom-side section of the actuating cylinder through a bottom line. When the rod of the actuating cylinder extends in a loaded condition, a circuit is configured such that oil supplied to the bottom line without passing through the accelerating cylinder is supplied to the bottom-side section of the actuating cylinder. The circuit for the unloaded condition and the circuit for the loaded condition is switched based on a pressure sensing in the bottom line.