Abstract:
A simplified elevator car door lock assembly locks an elevator car door if the car is outside a landing zone and there is an attempt to open those doors. The car doors are connected to the hoistway doors by a pair of vanes mounted on the car door and a pair of rollers mounted on the hoistway door. A third vane is attached to the car door and follows a cam path on the car door to lock the car doors if the car is not in a landing zone. Conversely, the third vane senses if the car is in a landing zone and does not lock the car door if it is moved.
Abstract:
According to an aspect of the present invention, a door drive mechanism for actuating a door of an elevator car laterally between open and closed positions is provided. The door is mounted on the car for lateral movement relative to the car, and is connected to the car by at least one pivotable arm. The door drive mechanism includes a linear door drive mechanism and at least door drive mount. The door drive mechanism is configured to be mounted on the car. The door drive mount is configured to be attached to the door and is in communication with the linear door drive mechanism. The linear door drive mechanism is operable to selectively drive the door drive mount, the attached door, and the pivot arm between the open position and the closed position.
Abstract:
A secondary positioning system for elevator car doors includes three sensors positioned in register with a plurality of openings formed within a door hanger. The unique spacing between the sensors in combination with unique spacing between each of the openings within the door hanger, allows determination of fully closed, fully opened, and intermediate positions and direction of elevator car doors.
Abstract:
An elevator car door system for opening and closing elevator car doors in an elevator car includes a high performance linear induction motor having a pair of movable motor primaries, each attached to a door hanger for each door, and a stationary motor secondary attached to a header bracket which is secured to the elevator car. Each motor primary includes a primary winding and a backiron spaced apart by a plurality of spacers that establish a magnetic gap therebetween. The motor secondary fits between the primary winding and the backiron as the moving motor primaries travel across the motor secondary, generating thrust.
Abstract:
A linear induction motor for opening and closing elevator car doors in an elevator system includes a motor primary fixedly attached to a door hanger and a motor secondary flexibly mounted to a header bracket of the elevator car. A pair of swivel joints secure the ends of the motor secondary to the header bracket. The swivel joints compensate for misalignment and twisting of the elevator car doors by allowing multi-dimensional movement of the motor secondary relative to the header bracket.
Abstract:
Disclosed is a door operator mounted in a space between a cab fascia and a sill edge plane. A feature of the door operator is a drive unit having a drive shaft, the drive unit being mounted in a central portion of the door operator, wherein drive pulleys are fastened to the drive shaft, thereby providing a drive force to linear transmission elements disposed about each of the drive pulleys. Another feature of the door operator is a modular mounting plate, wherein the door operator is mounted to the mounting plate, and in turn, the mounting plate is mounted in the space between the cab fascia and the sill edge plane.
Abstract:
A motor secondary in a linear induction motor used for opening and closing doors in an elevator system includes a secondary guide system having a first secondary guide and a second secondary guide. The first secondary guide is disposed on a bottom longitudinal edge of the motor secondary and the second secondary guide is disposed on a top longitudinal edge of the motor secondary. The guides space apart the motor secondary from the motor primary and establish small and constant running clearances therebetween.
Abstract:
Disclosed is a door operator mounted in a space between a cab fascia and a sill edge plane. A feature of the door operator is a drive unit connected to a drive pulley, the drive unit being mounted in a central portion of the door operator, wherein the drive pulley provides a drive force to a linear transmission element. Another feature of the door operator is a modular mounting plate, wherein the door operator is mounted to the mounting plate, and in turn, the mounting plate is mounted in the space between the cab fascia and the sill edge plane.
Abstract:
A device (40) for providing information regarding the position of an elevator car door (34) relative to a hoistway door (30) includes a reflector (42) supported on the hoistway door (30). A sensor (44) supported on an elevator car door (34) includes a plurality of sensing elements (46-50) for emitting radiation toward the reflector (42). Received radiation reflected from the reflector (42) provides an indication of the position of the car door (34) relative to the hoistway door (30).
Abstract:
A coupling (8) for engaging an elevator car door (16) and a landing door (20) includes a fixed vane (36) and a movable vane (38). The movable vane is positioned by an engagement link (42) in response to movement of the car door (16) and the presence or absence of a corresponding landing door roller (28).