摘要:
With N_Port ID Virtualization (NPIV), a managed system can be configured so that multiple logical partitions (LPARs) can access independent physical storage through the same physical fibre channel adapter. An NPIV client recovery component of a virtualization management component, such as a Power Hypervisor (pHYP), provides the emulation mapping between server and client virtual fibre channel adapters. The pHYP also provides a mechanism that prevents client partition crashes when the NPIV server (e.g., a VIOS logical partition) goes down. When the NPIV server is rebooted or powers down, the pHYP handles the client LPARs to avoid a crash by removing processing resources from the client logical partition. Thereby, the client logical partition is prevented from attempting to access a root volume group in physical storage via the NPIV server. The pHYP allocates processor resources to the client LPAR when the NPIV server is again available for UO processing.
摘要:
With N_Port ID Virtualization (NPIV), a managed system can he configured so that multiple logical partitions (LPARs) can access independent physical storage through the same physical fibre channel adapter. An NPIV client recovery component of a virtualization management component, such as a Power Hypervisor (pHYP), provides the emulation mapping between server and client virtual fibre channel adapters. The pHYP also provides a mechanism that prevents client partition crashes when the NPIV server (e.g., a VIOS logical partition) goes down. When the NPIV server is rebooted or powers down, the pHYP handles the client LPARs to avoid a crash by removing processing resources from the client logical partition. Thereby, the client logical partition is prevented from attempting to access a root volume group in physical storage via the NPIV server. The pHYP allocates processor resources to the client LPAR when the NPIV server is again available for I/O processing.
摘要:
With N_Port ID Virtualization (NPIV), a managed system can be configured so that multiple logical partitions (LPARs) can access independent physical storage through the same physical fiber channel adapter. An NPIV client recovery component of a virtualization management component, such as a Power Hypervisor (pHYP), provides the emulation mapping between server and client virtual fiber channel adapters. The pHYP also provides a mechanism that prevents client partition crashes when the NPIV server (e.g., a VIOS logical partition) goes down. When the NPIV server is rebooted or powers down, the pHYP handles the client LPARs to avoid a crash by removing processing resources from the client logical partition. Thereby, the client logical partition is prevented from attempting to access a root volume group in physical storage via the NPIV server. The pHYP allocates processor resources to the client LPAR when the NPIV server is again available for I/O processing.
摘要:
A method, data processing system, and computer program product autonomously migrate clients serviced by a first VIOS to other VIOSes in the event of a VIOS cluster “split-brain” scenario generating a primary sub-cluster and a secondary sub-cluster, where the first VIOS is in the secondary sub-cluster. The VIOSes in the cluster continually exchange keep-alive information to provide each VIOS with an up-to-date status of other VIOSes within the cluster and to notify the VIOSes when one or more nodes loose connection to or are no longer communicating with other nodes within the cluster, as occurs with a cluster split-brain event/condition. When this event is detected, a first sub-cluster assumes a primary sub-cluster role and one or more clients served by one or more VIOSes within the secondary sub-cluster are autonomously migrated to other VIOSes in the primary sub-cluster, thus minimizing downtime for clients previously served by the unavailable/uncommunicative VIOSes.
摘要:
A first virtual I/O server (VIOS) provides a cluster aware (CA) operating system (OS) executing on a processor resource of the first VIOS to register the first VIOS within a VIOS cluster. The first VIOS comprises a first field/failure data capture (FFDC) module that executes within the first VIOS and performs the functions of: receiving from an event listener a signal indicating that an FFFDC event/condition has been detected by the first VIOS; and automatically transmitting FFDC data to the shared storage repository for storage of the FFDC data within the shared storage repository. The FFDC module further performs the functions of: transmitting to one or more second VIOSes within the VIOS cluster, one or more messages to inform the one or more second VIOSes of an occurrence of the FFDC event/condition that was detected by the first VIOS.
摘要:
A method, data processing system, and computer program product autonomously migrate clients serviced by a first VIOS to other VIOSes in the event of a VIOS cluster “split-brain” scenario generating a primary sub-cluster and a secondary sub-cluster, where the first VIOS is in the secondary sub-cluster. The VIOSes in the cluster continually exchange keep-alive information to provide each VIOS with an up-to-date status of other VIOSes within the cluster and to notify the VIOSes when one or more nodes loose connection to or are no longer communicating with other nodes within the cluster, as occurs with a cluster split-brain event/condition. When this event is detected, a first sub-cluster assumes a primary sub-cluster role and one or more clients served by one or more VIOSes within the secondary sub-cluster are autonomously migrated to other VIOSes in the primary sub-cluster, thus minimizing downtime for clients previously served by the unavailable/uncommunicative VIOSes.
摘要:
Hibernation and remote restore functions of a client logical partition (LPAR) that exists within a data processing system having cluster-aware Virtual Input/Output (I/O) Servers (VIOSes) is performed via receipt of commands via a virtual control panel (VCP) through an underlying hypervisor. The client hibernation data file is stored in a shared repository by a source/original VIOS assigned to the client. The hypervisor receives a remote restart command and assigns a target/remote client LPAR and a target VIOS. The source I/O adapters and target I/O adapters are locked and the target VIOS gathers adapter configuration information from the source VIOS and configures the target adapters to be able to perform the I/O functionality provided by the source adapters to the client LPAR. The target VIOS then retrieves the client's hibernation data file, and the client LPAR is restored at the remote LPAR with the target VIOS providing the client's I/O functionality.
摘要:
An alternative migration of an LPAR from one server system to another when either or both of the server systems cannot access a Storage Area Network (SAN) or like external storage network. If said source and destination server system do not have access to the same SAN, then a mirror image of said all data storage supporting the transferred LPAR is created and transmitted to local storage supporting the destination server system and then the logical partition (LPAR) is transmitted over the connecting network from the source server system to the destination server system.
摘要:
A method, system, and computer program product provide a shared virtual memory space via a cluster-aware virtual input/output (I/O) server (VIOS). The VIOS receives a paging file request from a first LPAR and thin-provisions a logical unit (LU) within the virtual memory space as a shared paging file of the same storage amount as the minimum required capacity. The VIOS also autonomously maintains a logical redundancy LU (redundant LU) as a real-time copy of the provisioned/allocated LU, where the redundant LU is a dynamic copy of the allocated LU that is autonomously updated responsive to any changes within the allocated LU. Responsive to a second VIOS attempting to read a LU currently utilized by a first VIOS, the read request is autonomously redirected to the logical redundancy LU. The redundant LU can be utilized to facilitate migration of a client LPAR to a different computing electronic complex (CEC).
摘要:
Hibernation and remote restore functions of a client logical partition (LPAR) that exists within a data processing system having cluster-aware Virtual Input/Output (I/O) Servers (VIOSes) is performed via receipt of commands via a virtual control panel (VCP) through an underlying hypervisor. The client hibernation data file is stored in a shared repository by a source/original VIOS assigned to the client. The hypervisor receives a remote restart command and assigns a target/remote client LPAR and a target VIOS. The source I/O adapters and target I/O adapters are locked and the target VIOS gathers adapter configuration information from the source VIOS and configures the target adapters to be able to perform the I/O functionality provided by the source adapters to the client LPAR. The target VIOS then retrieves the client's hibernation data file, and the client LPAR is restored at the remote LPAR with the target VIOS providing the client's I/O functionality.