摘要:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
摘要:
Systems and methods related to optical nanosensors comprising photoluminescent nanostructures are generally described. Generally, the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure. In some cases, the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions). The nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules, in some embodiments. In addition, in some instances the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule. In some embodiments, the interaction between the analyte and the nanosensor (e.g., between the analyte and the photoluminescent nanostructure) can be reversible, which may allow, for example, for the reuse of a nanosensor after it has been exposed to an analyte.
摘要:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
摘要:
Systems and methods related to compositions including hydrogels and photoluminescent nanostructures are described. The compositions can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus. Changes in one or more properties of the hydrogel may impart a change in the photoluminescence of the nanostructures embedded in the hydrogel.