摘要:
Alkali metal perchlorate-containing gas generant compositions which, upon combustion, produce or result in an improved effluent and related methods for generating an inflation gas for use in an inflatable restraint system are provided. Such alkali metal perchlorate-containing gas generant compositions include at least one alkali metal perchlorate present with a mean particle size in excess of 100 microns. Such alkali metal perchlorate-containing gas generant compositions also include or contain a suitable non-azide, organic, nitrogen-containing fuel and at least one copper-containing compound selected from the group consisting of basic copper nitrate, cupric oxide, copper diammine dinitrate-ammonium nitrate mixture wherein ammonium nitrate is present in the mixture in a range of about 3 to about 90 weight percent, copper diammine bitetrazole, a copper-nitrate complex resulting from reaction of 5-aminotetrazole with basic copper nitrate and combinations thereof.
摘要:
Gas generant compositions, such as may be suited for use in inflating automotive inflatable restraint airbag cushions, are provided. Such gas generant compositions generally contain a mixture of guanidine nitrate, ammonium nitrate, and a transition metal ammine nitrate, such as copper diammine dinitrate and preferably also contain one or more ballistic additives.
摘要:
Ammonium perchlorate-containing gas generant compositions which, upon combustion, produce or result in an improved effluent and related methods for generating an inflation gas for use in an inflatable restraint system are provided. Such ammonium perchlorate-containing gas generant compositions include ammonium perchlorate present with a mean particle size in excess of 100 microns. Such ammonium perchlorate-containing gas generant compositions also include or contain a chlorine scavenger present in an amount effective to result in a gaseous effluent that is substantially free of hydrogen chloride when the gas generant is combusted, wherein at least about 98 weight percent of the chlorine scavenger is a copper-containing compound. Suitable copper-containing chlorine scavenger compounds include basic copper nitrate, cupric oxide, copper diammine dinitrate-ammonium nitrate mixture wherein ammonium nitrate is present in the mixture in a range of about 3 to about 90 weight percent, copper diammine bitetrazole, a copper-nitrate complex resulting from reaction of 5-aminotetrazole with basic copper nitrate and combinations thereof.
摘要:
Alkali metal perchlorate-containing gas generant compositions which, upon combustion, produce or result in an improved effluent and related methods for generating an inflation gas for use in an inflatable restraint system are provided. Such alkali metal perchlorate-containing gas generant compositions include at least one alkali metal perchlorate present with a mean particle size in excess of 100 microns. Such alkali metal perchlorate-containing gas generant compositions also include or contain a suitable non-azide, organic, nitrogen-containing fuel and at least one copper-containing compound selected from the group consisting of basic copper nitrate, cupric oxide, copper diammine dinitrate-ammonium nitrate mixture wherein ammonium nitrate is present in the mixture in a range of about 3 to about 90 weight percent, copper diammine bitetrazole, a copper-nitrate complex resulting from reaction of 5-aminotetrazole with basic copper nitrate and combinations thereof.
摘要:
Alkali metal perchlorate-containing gas generant compositions which, upon combustion, produce or result in an improved effluent and related methods for generating an inflation gas for use in an inflatable restraint system are provided. Such alkali metal perchlorate-containing gas generant compositions include at least one alkali metal perchlorate present with a mean particle size in excess of 100 microns. Such alkali metal perchlorate-containing gas generant compositions also include or contain a suitable non-azide, organic, nitrogen-containing fuel and at least one copper-containing compound selected from the group consisting of basic copper nitrate, cupric oxide, copper diammine dinitrate-ammonium nitrate mixture wherein ammonium nitrate is present in the mixture in a range of about 3 to about 90 weight percent, copper diammine bitetrazole, a copper-nitrate complex resulting from reaction of 5-aminotetrazole with basic copper nitrate and combinations thereof.
摘要:
Basic copper nitrate-containing gas generant compositions and associated methods are provided for producing or resulting in increased burn rates via the inclusion of an effective amount of one or more metal (e.g., Al, Ti, Zn, Mg and/or Zr) oxide additives.
摘要:
Chemical coolant formulations for treating the hot gas formed by an airbag inflator and corresponding methods of inflating an airbag cushion are provided. The chemical coolant formulations include a first ingredient which, when contacted by the hot gas, endothermically decomposes to form a cooling gas and a solid slag component and a second ingredient which, when contacted by the hot gas, forms a liquid slag component. The solid and liquid slag components cooperate to form a unified slag mass.
摘要:
Gas generant compositions and methods of gas generation are provided whereby desired gas generation can be realized without requiring the presence and use a charge or coating of an associated igniter composition.
摘要:
A phase stabilized ammonium nitrate and a method of making the same wherein ammonium nitrate is stabilized through the presence of a stabilizing metal diammine dinitrate without requiring or necessitating the isolation of explosive metal tetrammine nitrate complexes.
摘要:
A method of making a gas generant formulation which contains a transition metal diammine dinitrate is provided wherein a transition metal nitrate is reacted with an ammonia source to form an aqueous slurry containing a corresponding reaction mixture. A spray dryable precursor to the gas generant formulation is formed including at least a gas generating fuel and a sufficient quantity of water to render the precursor spray dryable. The precursor is subsequently spray dried to form a gas generant powder. The method may also include a relatively mild heat treatment of the dried material, either as a part of the spray drying or subsequent to such spray drying.