Abstract:
Undesirable transistor leakage in transistor structures becomes greatly reduced in substrates having a doped implant region formed via pulling back first and second layers of a process stack. A portion of the substrate, which also has first and second layers deposited thereon, defines the process stack. The dopant is selected having the same n- or p-typing as the substrate. Through etching, the first and second layers of the process stack become pulled back from a trench wall of the substrate to form the implant region. Occupation of the implant region by the dopant prevents undesirable transistor leakage because the electrical characteristics of the implant region are so significantly changed, in comparison to central areas of the substrate underneath the first layer, that the threshold voltage of the implant region is raised to be about equivalent to or greater than the substantially uniform threshold voltage in the central area.
Abstract:
Raised structures comprising overlying silicon layers formed by controlled selective epitaxial growth, and methods for forming such raised-structure on a semiconductor substrate are provided. The structures are formed by selectively growing an initial epitaxial layer of monocrystalline silicon on the surface of a semiconductive substrate, and forming a thin film of insulative material over the epitaxial layer. A portion of the insulative layer is removed to expose the top surface of the epitaxial layer, with the insulative material remaining along the sidewalls as spacers to prevent lateral growth. A second epitaxial layer is selectively grown on the exposed surface of the initial epitaxially grown crystal layer, and a thin insulative film is deposited over the second epitaxial layer. Additional epitaxial layers are added as desired to provide a vertical structure of a desired height comprising multiple layers of single silicon crystals, each epitaxial layer have insulated sidewalls, with the uppermost epitaxial layer also with an insulated top surface. The resultant structure can function, for example, as a vertical gate of a DRAM cell, elevated source/drain structures, or other semiconductor device feature.