摘要:
A microfluidic device is described. The microfluidic device comprises at least one transport channel and at least one working chamber, wherein the at least one transport channel and the at least one working chamber are separated from each other by a common deformable wall. The at least one transport channel is for containing a transport fluid and the at least one working chamber is for containing a working fluid. The microfluidic device comprises at least one pair of electrodes for changing the pressure on the working fluid such that when the pressure on the working fluid is changed, the deformable wall deforms, resulting in a change of the cross-section of the at least one transport channel. The working chamber comprises a flexible wall different from the common deformable wall and at least one electrode of the at least one pair of electrodes is provided on the flexible wall.
摘要:
A microfluidic device is described. The microfluidic device comprises at least one transport channel and at least one working chamber, wherein the at least one transport channel and the at least one working chamber are separated from each other by a common deformable wall. The at least one transport channel is for containing a transport fluid and the at least one working chamber is for containing a working fluid. The microfluidic device comprises at least one pair of electrodes for changing the pressure on the working fluid such that when the pressure on the working fluid is changed, the deformable wall deforms, resulting in a change of the cross-section of the at least one transport channel. The working chamber comprises a flexible wall different from the common deformable wall and at least one electrode of the at least one pair of electrodes is provided on the flexible wall.
摘要:
A micromachined piezoelectric energy harvester and methods of fabricating a micromachined piezoelectric energy harvester are disclosed. In one embodiment, the micromachined piezoelectric energy harvester comprises a resonating beam formed of a polymer material, at least one piezoelectric transducer embedded in the resonating beam, and at least one mass formed on the resonating beam. The resonating beam is configured to generate mechanical stress in the at least one piezoelectric transducer, and the at least one piezoelectric transducer is configured to generate electrical energy in response to the mechanical stress.
摘要:
Disclosed is a highly reliable inductive vibration power generator wherein mechanical damping caused by the phenomenon of electrostatic pulling-in (stiction) and the like is suppressed even if the potential of an electret is increased and/or the gap between an electrode and the electret is reduced in order to increase the amount of power generation. The two surfaces of a movable substrate are respectively provided with first electrets and second electrets. By means of providing first electrodes and second electrodes to a lower substrate and an upper substrate and facing the respective electrets with a predetermined gap therebetween, electrostatic force is caused to arise on both sides of the movable substrate, and the pulling of the movable substrate in only one direction is prevented.
摘要:
A method for fabricating an out-of-plane variable overlap MEMS capacitor comprises: providing a substrate (40) comprising a first layer (41), a second layer (42), and a third layer (43) stacked on top of one another; and etching a plurality of first trenches (70) through the third layer (43), through the second layer (42), and into the first layer (41) using a single etching mask. Etching the plurality of first trenches (70) defines a plurality of first fingers (51) in the third layer (43) and a plurality of second fingers (52) in the first layer (41). By using a single mask, the process is self-aligned. The method further comprises removing the second layer (42) in a first region where the plurality of first trenches (70) are provided, thereby forming a spacing or gap between the plurality of first fingers (51) and the plurality of second fingers (52).
摘要:
A method for fabricating an out-of-plane variable overlap MEMS capacitor comprises: providing a substrate (40) comprising a first layer (41), a second layer (42), and a third layer (43) stacked on top of one another; and etching a plurality of first trenches (70) through the third layer (43), through the second layer (42), and into the first layer (41) using a single etching mask. Etching the plurality of first trenches (70) defines a plurality of first fingers (51) in the third layer (43) and a plurality of second fingers (52) in the first layer (41). By using a single mask, the process is self-aligned. The method further comprises removing the second layer (42) in a first region where the plurality of first trenches (70) are provided, thereby forming a spacing or gap between the plurality of first fingers (51) and the plurality of second fingers (52).
摘要:
Disclosed is a highly reliable inductive vibration power generator wherein mechanical damping caused by the phenomenon of electrostatic pulling-in (stiction) and the like is suppressed even if the potential of an electret is increased and/or the gap between an electrode and the electret is reduced in order to increase the amount of power generation. The two surfaces of a movable substrate are respectively provided with first electrets and second electrets. By means of providing first electrodes and second electrodes to a lower substrate and an upper substrate and facing the respective electrets with a predetermined gap therebetween, electrostatic force is caused to arise on both sides of the movable substrate, and the pulling of the movable substrate in only one direction is prevented.
摘要:
A microstructure has a substrate, a fixed electrode having a plurality of fixed fingers fixed to the substrate, a movable electrode having a body (28) and a plurality of fingers (22) extending from the body, the movable electrode being movable relative to the fixed fingers to vary a capacitance of the electrodes. The fixed fingers (21) extend in a first plane parallel to a main surface of the substrate, wherein the body of the movable electrode extends in a second plane adjacent to the first plane so that the body faces at least some of the plurality of fixed fingers. Such vertical integration can help enable such devices to be made more compact.
摘要:
A microstructure has a substrate, a fixed electrode having a plurality of fixed fingers fixed to the substrate, a movable electrode having a body (28) and a plurality of fingers (22) extending from the body, the movable electrode being movable relative to the fixed fingers to vary a capacitance of the electrodes. The fixed fingers (21) extend in a first plane parallel to a main surface of the substrate, wherein the body of the movable electrode extends in a second plane adjacent to the first plane so that the body faces at least some of the plurality of fixed fingers. Such vertical integration can help enable such devices to be made more compact.