Abstract:
Apparatus and method for continuously casting metal strip includes a pair of casting rolls having casting surfaces with a center portion, edge portions each having average surface roughness between 3 and 7 Ra, and intermediate portion between each edge portion and the center portion, the center portion average surface roughness between 1.2 and 4.0 times the edge portion surface roughness, and the intermediate portions average surface roughness between that of the edge and center portions. The surface roughness of the center portion is tapered across its width, and may be tapered across its width is in stepped zones. The center portion may have surface roughness varied across the surface to correspond to a desired variation in metal shell thickness across the cast strip. The center portion may be at least 60% of the casting roll width, and each edge portion may be up to 7% of the casting roll width.
Abstract:
A method of producing thin cast strip by continuous casting having a two-piece side dam assembly. The side dam assembly includes a side dam having an upper portion positioned adjacent to a lower portion. The upper and lower side dam portions each have opposite outer surfaces, one surface capable of contacting molten metal and the opposite outer surface having at least one fastening portion capable of attaching the side dam portions to a corresponding side dam holder, in order to hold the side dam portions in place during casting without exposed portions of the side dam holders extending substantially beyond the opposite outer surfaces toward the outer surfaces capable of contacting molten metal, and without the side dam holders preventing the upper side dam portion from being properly positioned adjacent to the lower side dam portion.
Abstract:
A method of continuously casting thin strip dynamically controlling roll casting surface configuation by controlling the temperature of water flowing through the longitudinal water flow passages in a cyclindrical tube thickness of no more than 80 millimeters of counter rotated casting rolls, and varying the speed of the casting rolls with attenuation of the ends of the casting rolls with a casting roll drive system responsive to electrical signals received from sensors during a casting campaign.
Abstract:
A method of producing thin cast strip by continuous casting having a two-piece side dam assembly. The side dam assembly includes a side dam having an upper portion positioned adjacent to a lower portion. The upper and lower side dam portions each have opposite outer surfaces, one surface capable of contacting molten metal and the opposite outer surface having at least one fastening portion capable of attaching the side dam portions to a corresponding side dam holder, in order to hold the side dam portions in place during casting without exposed portions of the side dam holders extending substantially beyond the opposite outer surfaces toward the outer surfaces capable of contacting molten metal, and without the side dam holders preventing the upper side dam portion from being properly positioned adjacent to the lower side dam portion.
Abstract:
Apparatus and method for continuously casting metal strip includes a pair of casting rolls having casting surfaces with a center portion, edge portions each having average surface roughness between 3 and 7 Ra, and intermediate portion between each edge portion and the center portion, the center portion average surface roughness between 1.2 and 4.0 times the edge portion surface roughness, and the intermediate portions average surface roughness between that of the edge and center portions. The surface roughness of the center portion is tapered across its width, and may be tapered across its width is in stepped zones. The center portion may have surface roughness varied across the surface to correspond to a desired variation in metal shell thickness across the cast strip. The center portion may be at least 60% of the casting roll width, and each edge portion may be up to 7% of the casting roll width.
Abstract:
Apparatus and method for continuously casting metal strip includes a pair of casting rolls having casting surfaces with a center portion, edge portions each having average surface roughness between 3 and 7 Ra, and intermediate portion between each edge portion and the center portion, the center portion average surface roughness between 1.2 and 4.0 times the edge portion surface roughness, and the intermediate portions average surface roughness between that of the edge and center portions. The surface roughness of the center portion is tapered across its width, and may be tapered across its width is in stepped zones. The center portion may have surface roughness varied across the surface to correspond to a desired variation in metal shell thickness across the cast strip. The center portion may be at least 60% of the casting roll width, and each edge portion may be up to 7% of the casting roll width.
Abstract:
A metal strip casting apparatus and a method of casting continuous metal strip includes assembling a pair of counter-rotatable casting rolls having casting surfaces positioned laterally forming a nip between for casting, and delivering molten metal through a delivery nozzle disposed above the nip capable to form a casting pool supported on the casting rolls. The delivery nozzle comprises segments each having elongate nozzle body with longitudinally extending side walls, end walls and a bottom part to form an inner trough, a nozzle insert disposed above bottom portions of the inner trough of each segment and supported relative to the nozzle body through which incoming molten metal may be delivered to the inner trough of each segment of the delivery nozzle, and the elongate nozzle body of each segment having passageways in fluid communication with the inner trough and outlet openings capable of discharging molten metal from the nozzle body outwardly into the casting pool.
Abstract:
A method of continuously casting thin strip dynamically controlling roll casting surface configuration by controlling the temperature of water flowing through the longitudinal water flow passages in a cylindrical tube thickness of no more than 80 millimeters of counter rotated casting rolls, and varying the speed of the casting rolls with attenuation of the ends of the casting rolls with a casting roll drive system responsive to electrical signals received from sensors during a casting campaign.
Abstract:
A method of producing thin cast strip by continuous casting having a two-piece side dam assembly. The side dam assembly includes a side dam having an upper portion positioned adjacent to a lower portion. The upper and lower side dam portions each have opposite outer surfaces, one surface capable of contacting molten metal and the opposite outer surface having at least one fastening portion capable of attaching the side dam portions to a corresponding side dam holder, in order to hold the side dam portions in place during casting without exposed portions of the side dam holders extending substantially beyond the opposite outer surfaces toward the outer surfaces capable of contacting molten metal, and without the side dam holders preventing the upper side dam portion from being properly positioned adjacent to the lower side dam portion.
Abstract:
A metal strip casting apparatus and a method of casting continuous metal strip includes assembling a pair of counter-rotatable casting rolls having casting surfaces positioned laterally forming a nip between for casting, and delivering molten metal through a delivery nozzle disposed above the nip capable to form a casting pool supported on the casting rolls. The delivery nozzle comprises segments each having elongate nozzle body with longitudinally extending side walls, end walls and a bottom part to form an inner trough, a nozzle insert disposed above bottom portions of the inner trough of each segment and supported relative to the nozzle body through which incoming molten metal may be delivered to the inner trough of each segment of the delivery nozzle, and the elongate nozzle body of each segment having passageways in fluid communication with the inner trough and outlet openings capable of discharging molten metal from the nozzle body outwardly into the casting pool.