Abstract:
A method and system for antenna selection diversity with dynamic gain control. A receiver selects a starting antenna and dwells on it until an incoming signal is detected. An AGC is applied on the received signal and an estimate of the received power is determined for the starting antenna. The receiver may dwell on other antennas if the signal in the first antenna is not strong enough for signal processing. The gain of an antenna may be set by the gain and power levels of the previously dwelled-on antennas and/or by a power coupling factor that exists between the antennas in an antenna switch. The receiver switches through the remaining antennas as long as necessary to select at least one of the antennas for signal processing. Dynamically adjusting the gain of antennas in a diversity system provides a more accurate and efficient antenna selection scheme.
Abstract:
A reduced-complexity maximum-likelihood detector that provides a high degree of signal detection accuracy while maintaining high processing speeds. A communication system implementing the present invention comprises a plurality of transmit sources operable to transmit a plurality of symbols over a plurality of channels, wherein the detector is operable to receive symbols corresponding to the transmitted symbols. The detector processes the received symbols to obtain initial estimates of the transmitted symbols and then uses the initial estimates to generate a plurality of reduced search sets. The reduced search sets are then used to generate decisions for detecting the transmitted symbols. In various embodiments of the invention, the decisions for detecting the symbols can be hard decisions or soft decisions. Furthermore, in various embodiments of the invention, the initial estimates can be obtained using a plurality of linear equalization techniques, including zero-forcing equalization, minimum-mean-squared-error equalization. The initial estimate can also be obtained by nulling and canceling techniques. In various embodiments of the invention, the data output corresponding to the transmitted symbols can be obtained using a log-likelihood probability ratio. The method and apparatus of the present invention can be applied to any communication system with multiple transmit streams.
Abstract:
A method for choosing at least one signal path is disclosed and may include determining a power level characteristic for each of a plurality of signal paths. The determined power level characteristic for each of the plurality of signal paths may be modified. At least one of the plurality of signal paths may be selected for receiving a signal. The selecting may be based on at least one of the modified power level characteristics. The method may also include cycling through at least one of the signal paths. The power level characteristic for each of the plurality of signal paths may be biased. The power level characteristic for each of the plurality of signal paths may be increased by a fixed amount.
Abstract:
An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
Abstract:
Angle estimation for modulated signal. A novel compensation technique is presented by which angle estimation may be performed for a modulated signal. More specifically, the angle between a constellation corresponding to a received signal and a constellation corresponding to a received signal may be very efficiently estimated using any one of the possible embodiments corresponding to various aspects of the invention. After this angle has been estimated, the received signal or the expected constellation may be rotated (or de-rotated) to compensate for this angular difference. In doing so, better estimates of the information bits that are demodulated and decoded from the received signal may be made. This approach may be implemented and adapted to any of a wide variety of communication systems including, but not limited to, single-input-multiple-output (SISO), single-input-multiple-output (SIMO), multiple-input-single-output (MISO), multiple-input-multiple-output (MIMO), and even space-time block code (STBC) communication systems or other communication systems.
Abstract:
An adaptive, reduced-complexity soft-output maximum-likelihood detector that is operable to process data by adaptively selecting a processing scheme based on a determination of signal quality. The signal quality is derived as a function of the noise, the modulation format, the channel (the communication environment), the transmit signal power and the receive signal power. If the signal quality is low, the signal is processed using a maximum likelihood detector. If, however, the signal quality is high, a simpler sub-optimal detector is used. By estimating the signal quality and choosing an appropriate detection method, the present invention ensures accurate detection of incoming data signals in a MIMO communication system while maintaining the highest possible processing speed.
Abstract:
An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
Abstract:
An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
Abstract:
A radio frequency receiver for discriminating a modulation type to decode a signal field of an encoded signal in a wireless communication system. The radio frequency (RF) receiver receives an encoded signal having a preamble training sequence associated with a frame, the preamble training sequence including the signal field. The radio frequency receive generates at least a first log-likelihood ratio (LLR) stream and a second LLR stream for each of a plurality of sub-symbols for a predetermined portion of the received encoded signal based upon an m-bit wide modulation reference, wherein m represents the bit width of the modulation reference. The first LLR stream and the second LLR stream each include a plurality of LLR values. The plurality of LLR values of the first LLR stream are summed to produce a first cumulative LLR, and the plurality of LLR values of the second LLR stream are summed to produce a second cumulative LLR. The first cumulative LLR is discriminated with the second cumulative LLR to produce a discriminated modulation type output. The receiver decodes the signal field based on the discriminated modulation type output.
Abstract:
Certain embodiments of the invention may be found in a method and system for antenna selection diversity with prediction. An antenna diversity system may use information that it has stored on the antenna selection process in previous frames to predict the starting receiving antenna and the starting transmission antenna for the next frame. The prediction may be based on which antennas were selected in previous frames or may be based metrics associated with performance of the antennas. Prediction may be based on a majority polling scheme of previously selected antennas in a determined number of previous frames. Prediction may also be based on a weighted sum of at least one selection metric for all antennas in a determined number of previous frames. Antenna prediction provides a significant performance improvement by reducing the processing and operational overhead in cases where a transmit or a receive antenna dominates.