摘要:
Video encoding computations are optimized by dynamically adjusting slice patterns of video frames based on complexity of each frame and allocating multi-core threading based on the slices. The complexity may be based on predefined parameters such as color, motion, and comparable ones for each slice. Allocation is determined based on capacity and queue of each processing core such that overall computation performance for video encoding is improved.
摘要:
A low complexity block-based, no-reference objective blockiness metric is provided that may be combined with other artifact metrics to measure overall quality of received video stream in a video conferencing application such that measures can be taken at the transmitter or in post-processing to enhance video quality. Prior knowledge of the blockiness boundaries may be used to reduce number of computations in determining the blockiness of a particular video frame.
摘要:
A block-based, no-reference sharpness metric is provided taking advantage of Human Visual System (HVS) characteristics. Texture and smooth region blocks are excluded in computing the metric since sharpness is perceived mostly around edges. Overall sharpness metric is computed by pooling simulated combination of information in human brain employing a logistic function to replicate the behavior of HVS.
摘要:
In a patient monitoring system (10), shorter interval physiological parameters and longer interval clinical data are collected from a monitored patient (12). A composite acuity score generator (70) generates or updates a composite acuity score indicative of wellbeing of the patient (12) based at least on the sensed physiological parameters and the longer interval data. A monitor (22, 56) displays current values of at least one of selected sensed physiological parameters, longer interval data, and the composite acuity score.
摘要:
Construction and use of forward error correction codes is provided. A systematic MDS FEC code is obtained having a property wherein any set of contiguous or non-contiguous r packets can be lost during a data transmission of k data packets and r encoded packets and the original k packets can be recovered unambiguously. The systematic MDS FEC code is transformed into a (k+r, k) systematic MDS FEC code that guarantees at least one of the encoded packets is a parity packet. The starting systematic MDS FEC code may be Cauchy-based, and the transformation code derived from the starting Cauchy-based MDS FEC code allows for very efficient initialization, encoding and decoding operations.