摘要:
A length of metallic lead from having anode terminals and cathode terminals integrally formed with each other extends between upper and lower molds of an apparatus for manufacturing tantalum solid electrolytic capacitors. The cathode terminals are first coated with a thermosetting conductive adhesive, and cathode layers of capacitor elements are then placed on the conductive adhesive. Thereafter, anode leads extending outwardly from the capacitor elements are placed on the anode terminals are joined thereto, respectively, by welding. A pressure is applied to the capacitor elements so that a portion of the conductive adhesive is squeezed out from one surface of each of the plurality of capacitor elements to a neighboring side surface thereof. The cathode terminals are then joined to the capacitor elements, respectively, by heat-curing the conductive adhesive, and the capacitor elements are finally covered with a sheathing resin.
摘要:
A length of metallic lead from having anode terminals and cathode terminals integrally formed with each other extends between upper and lower molds of an apparatus for manufacturing tantalum solid electrolytic capacitors. The cathode terminals are first coated with a thermosetting conductive adhesive, and cathode layers of capacitor elements are then placed on the conductive adhesive. Thereafter, anode leads extending outwardly from the capacitor elements are placed on the anode terminals are joined thereto, respectively, by welding. A pressure is applied to the capacitor elements so that a portion of the conductive adhesive is squeezed out from one surface of each of the plurality of capacitor elements to a neighboring side surface thereof The cathode terminals are then joined to the capacitor elements, respectively, by heat-curing the conductive adhesive, and the capacitor elements are finally covered with a sheathing resin.
摘要:
A chip type solid electrolytic capacitor of the present invention has a section formed in a step-wise manner on a cathode lead frame that is connected with a capacitor element. An anode lead wire of the capacitor element is resistance welded to the top of a reversed V-letter shaped structure formed by folding part of an anode lead frame into halves. Further, with the chip type solid electrolytic capacitor of the present invention, part of respective cathode and anode lead frames is exposed outside in such a way as being made flush with the periphery of a resin package, thereby each serving as a terminal. Accordingly, a space problem due to the terminals has been eliminated and the anode lead wire can be made short, thus allowing the volume of a capacitor element employed to be increased. As a result, a chip type solid electrolytic capacitor having a large capacity with its outer dimensions is kept the same as a prior art capacitor can be obtained.