摘要:
An organic EL device which can easily control colors to obtain white light emission, and has a high efficiency. An organic electroluminescent device 10 including; at least an anode 1, an organic emitting layer and a cathode 6 stacked in this order; at least a first emitting layer 3 including a fluorescent dopant and a second emitting layer 4 comprising a phosphorescent dopant being stacked in the organic emitting layer.
摘要:
An organic electroluminescent device including at least an anode, a first emitting layer, a hole barrier layer, a second emitting layer and a cathode in this order. The first emitting layer and the second emitting layer both include a hole transporting material. The organic EL device is small in chromaticity change and has high efficiency.
摘要:
An organic electroluminescent device including a pair of electrodes, and at least two organic emitting layers held between the pair of electrodes, (1) two organic emitting layers being arranged with an electron barrier layer interposed therebetween, (2) the two organic emitting layers both including an electron-transporting emitting material.
摘要:
An organic electroluminescent device including a pair of electrodes, and at least two organic emitting layers held between the pair of electrodes, (1) two organic emitting layers being arranged with an electron barrier layer interposed therebetween, (2) the two organic emitting layers both including an electron-transporting emitting material.
摘要:
An organic electroluminescent device including at least an anode, a first emitting layer, a hole barrier layer, a second emitting layer and a cathode in this order. The first emitting layer and the second emitting layer both include a hole transporting material. The organic EL device is small in chromaticity change and has high efficiency.
摘要:
An organic electroluminescence element comprising: an anode; a first emitting layer comprising at least a first host material and a first dopant; a second emitting layer comprising at least a second host material and a second dopant; and a cathode in the order mentioned: wherein the energy gap Egh1 of the first host material, the energy gap Egd1 of the first dopant, the energy gap Egh2 of the second host material, and the energy gap Egd2 of the second dopant satisfy the following formulas; and the luminescent intensity I1 at the maximum luminescent wavelength of an emission spectrum derived from the first emitting layer, and the luminescent intensity I2 at the maximum luminescent wavelength of an emission spectrum derived from the second emitting layer satisfy the following formula: Egh1>Egd1 Egh2>Egd2 Egd1>Egd2 I1>3.5×I2.
摘要:
An organic electroluminescence element comprising: an anode; a first emitting layer comprising at least a first host material and a first dopant; a second emitting layer comprising at least a second host material and a second dopant; and a cathode in the order mentioned: wherein the energy gap Egh1 of the first host material, the energy gap Egd1 of the first dopant, the energy gap Egh2 of the second host material, and the energy gap Egd2 of the second dopant satisfy the following formulas; and the luminescent intensity I1 at the maximum luminescent wavelength of an emission spectrum derived from the first emitting layer, and the luminescent intensity I2 at the maximum luminescent wavelength of an emission spectrum derived from the second emitting layer satisfy the following formula: Egh1>Egd1 Egh2>Egd2 Egd1>Egd2 I1>3.5×I2.
摘要:
An organic electroluminescence element comprising: an anode; a first emitting layer comprising at least a first host material and a first dopant; a second emitting layer comprising at least a second host material and a second dopant; and a cathode in the order mentioned: wherein the energy gap Egh1 of the first host material, the energy gap Egd1 of the first dopant, the energy gap Egh2 of the second host material, and the energy gap Egd2 of the second dopant satisfy the following formulas; and the luminescent intensity I1 at the maximum luminescent wavelength of an emission spectrum derived from the first emitting layer, and the luminescent intensity I2 at the maximum luminescent wavelength of an emission spectrum derived from the second emitting layer satisfy the following formula: Egh1>Egd1 Egh2>Egd2 Egd1>Egd2 I1>3.5×I2.
摘要:
An organic electroluminescence device emitting white light which comprises at least two light emitting layers and an electron transporting layer comprising a heterocyclic derivative having nitrogen atom or silicon atom which are disposed between a pair of electrodes, wherein the energy gap of a host compound in each light emitting layer is in a specific range, the energy gap of the heterocyclic derivative having nitrogen atom or silicon atom in the electron transporting layer is in a specific range, and the ionization potential of the heterocyclic derivative having nitrogen atom or silicon atom in the electron transporting layer and the ionization potential of the host compound in the light emitting layer adjacent to the electron transporting layer satisfy a specific relation. The organic electroluminescence device provides a great efficiency of light emission under a low voltage and has a long lifetime, and exhibits no change in the chromaticity.
摘要:
An organic electroluminescence device emitting white light which comprises at least two light emitting layers and an electron transporting layer comprising a heterocyclic derivative having nitrogen atom or silicon atom which are disposed between a pair of electrodes, wherein the energy gap of a host compound in each light emitting layer is in a specific range, the energy gap of the heterocyclic derivative having nitrogen atom or silicon atom in the electron transporting layer is in a specific range, and the ionization potential of the heterocyclic derivative having nitrogen atom or silicon atom in the electron transporting layer and the ionization potential of the host compound in the light emitting layer adjacent to the electron transporting layer satisfy a specific relation. The organic electroluminescence device provides a great efficiency of light emission under a low voltage and has a long lifetime, and exhibits no change in the chromaticity.