Abstract:
A system for determining performance data of plants growing in a field. The system comprises a mass flow meter for generating mass data related to the mass of plant product passed through the mass flow meter, and that is communicatively connected to a computer based data processing system; a temperature sensor for determining the temperature of the air adjacent the mass flow meter or within the mass flow meter, and that communicatively connected to the computer based data processing system, and a moisture sensor for determining the moisture of air adjacent the mass flow meter or within the mass flow meter, and that is communicatively connected to the computer based data processing system. The computer based data processing system is structured and operable to utilize the mass data, the air temperature and the air moisture to determine a yield of the plants from which the plant product was harvested.
Abstract:
The current disclosure describes an automated high-throughput small object sorting system for separating small object via oil and/or moisture content using novel nuclear magnetic resonance (NMR) systems and methods. The disclosed systems and methods for measuring the oil and/or moisture content of a single small object in a low-field time domain NMR instrument are superior in sample throughput and signal-to-noise ratio to conventional NMR systems and methods (free induction decay or spin echo) for single small object oil/moisture measurement.
Abstract:
The current disclosure describes an automated high-throughput small object sorting system for separating small object via oil and/or moisture content using novel nuclear magnetic resonance (NMR) systems and methods. The disclosed systems and methods for measuring the oil and/or moisture content of a single small object in a low-field time domain NMR instrument are superior in sample throughput and signal-to-noise ratio to conventional NMR systems and methods (free induction decay or spin echo) for single small object oil/moisture measurement.
Abstract:
The current disclosure describes an automated high-throughput seed sorting system for separating seed via oil and/or moisture content using novel nuclear magnetic resonance (NMR) systems and methods. The disclosed systems and methods for measuring the oil and/or moisture content of a single seed in a low-field time domain NMR instrument are superior in sample throughput and signal-to-noise ratio to conventional NMR systems and methods (free induction decay or spin echo) for single seed oil/moisture measurement.
Abstract:
The current disclosure describes an automated high-throughput seed sorting system for separating seed via oil and/or moisture content using novel nuclear magnetic resonance (NMR) systems and methods. The disclosed systems and methods for measuring the oil and/or moisture content of a single seed in a low-field time domain NMR instrument are superior in sample throughput and signal-to-noise ratio to conventional NMR systems and methods (free induction decay or spin echo) for single seed oil/moisture measurement.