Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
The present disclosure provides systems and methods for counting a plurality of objects and parsing the objects into groups of varying quantities. In various embodiments, the system includes a singulating and counting module operable to singulate and count a plurality of objects from a large volume of the objects. Additionally, the system includes a diverter and accumulator module operable to receive the singulated objects, parse the objects into groups of varying quantities, and direct each group into a selected one of a plurality of discharge funnels. Furthermore, the system includes an object collection module operable to position a plurality of object collection receptacles adjacent the discharge funnels such that each group of objects is deposited into a respective corresponding one of the object collection receptacles.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
A system for determining performance data of plants growing in a field. The system comprises a mass flow meter for generating mass data related to the mass of plant product passed through the mass flow meter, and that is communicatively connected to a computer based data processing system; a temperature sensor for determining the temperature of the air adjacent the mass flow meter or within the mass flow meter, and that communicatively connected to the computer based data processing system, and a moisture sensor for determining the moisture of air adjacent the mass flow meter or within the mass flow meter, and that is communicatively connected to the computer based data processing system. The computer based data processing system is structured and operable to utilize the mass data, the air temperature and the air moisture to determine a yield of the plants from which the plant product was harvested.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
The present disclosure provides systems and methods for counting a plurality of objects and parsing the objects into groups of varying quantities. In various embodiments, the system includes a singulating and counting module operable to singulate and count a plurality of objects from a large volume of the objects. Additionally, the system includes a diverter and accumulator module operable to receive the singulated objects, parse the objects into groups of varying quantities, and direct each group into a selected one of a plurality of discharge funnels. Furthermore, the system includes an object collection module operable to position a plurality of object collection receptacles adjacent the discharge funnels such that each group of objects is deposited into a respective corresponding one of the object collection receptacles.
Abstract:
The present disclosure provides systems and methods for counting a plurality of objects and parsing the objects into groups of varying quantities. In various embodiments, the system includes a singulating and counting module operable to singulate and count a plurality of objects from a large volume of the objects. Additionally, the system includes a diverter and accumulator module operable to receive the singulated objects, parse the objects into groups of varying quantities, and direct each group into a selected one of a plurality of discharge funnels. Furthermore, the system includes an object collection module operable to sequentially position each one of a plurality of object collection receptacles adjacent the discharge funnels such that each group of objects is deposited into a respective corresponding one of the object collection receptacles.
Abstract:
An automated method for operating an automated seed sampling system having a seed loading station, a seed transport subsystem, and a seed sampling station generally includes sensing whether individual seeds are successfully isolated from a bulk of seeds at the seed loading station, and sensing whether the isolated seeds are properly positioned by the seed transport subsystem adjacent the seed sampling station in preparation for removing tissue from the isolated seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.