Abstract:
The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.
Abstract:
The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
Abstract:
The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.
Abstract:
The present disclosure is in the field of plant breeding and genetics, particularly as it pertains to the genus Glycine. More specifically, the invention relates to methods and compositions for producing a population of soybean plants with enhanced resistance to soybean cyst nematode. The methods use the detection of molecular genetic markers linked to soybean cyst nematode resistance loci to select for plants displaying an enhanced soybean cyst nematode resistance phenotype.
Abstract:
The present invention is in the field of plant breeding and aphid resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to aphids, Aphis glycines. The invention further includes method for monitoring the introgression quantitative trait loci (QTL) conferring aphid resistance into elite germplasm in a breeding program.