摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Provided is a complier which optimizes parallel processing. The complier records the number of execution cores, which is the number of processor cores that execute a target program. First, the compiler detects a dominant path, which is a candidate of an execution path to be consecutively executed by a single processor core, from a target program. Subsequently, the compiler selects dominant paths with the number not larger than the number of execution cores, and generates clusters of tasks to be executed by a multi-core processor in parallel or consecutively. After that, the compiler computes an execution time for which each of the generated clusters is executed by the processor cores with the number equal to one or each of a plurality natural numbers selected from the natural numbers not larger than the number of execution cores. Then, the compiler selects the number of processor cores to be assigned for execution of each of the clusters based on the computed execution time.
摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Data transfer during processor context switching is reduced, particularly in relation to a time-sharing microtasking programming model. Prior to switching context of a processor having local memory from a first to a second process, a portion of the local memory that does not require transfer to system memory for proper saving of data associated with the first process is determined. The context of the processor is then switched from the first to the second process, including transferring all of the local memory as the data associated with the first process, to system memory—except for the portion of the local memory that has been determined as not requiring saving to the system memory for proper saving of the data associated with the first process. Therefore, switching the context from the first to the second process results in a reduction of data transferred from the local memory to the system memory.
摘要:
Provided is a complier which optimizes parallel processing. The complier records the number of execution cores, which is the number of processor cores that execute a target program. First, the compiler detects a dominant path, which is a candidate of an execution path to be consecutively executed by a single processor core, from a target program. Subsequently, the compiler selects dominant paths with the number not larger than the number of execution cores, and generates clusters of tasks to be executed by a multi-core processor in parallel or consecutively. After that, the compiler computes an execution time for which each of the generated clusters is executed by the processor cores with the number equal to one or each of a plurality natural numbers selected from the natural numbers not larger than the number of execution cores. Then, the compiler selects the number of processor cores to be assigned for execution of each of the clusters based on the computed execution time.
摘要:
A system includes a detection unit configured to detect unauthorized access to one or more information processing apparatuses that are virtually implemented by virtual machines executed by a computer; an authorized network configured to transfer authorized access to the one or more information processing apparatuses from an external network; a honeypot network configured to transfer unauthorized access to the information processing apparatuses from the external network; and a control unit configured to connect the information processing apparatuses for which no unauthorized access has been detected to the authorized network, and connect the information processing apparatuses for which unauthorized access has been detected to the honeypot network; wherein the control unit shifts, in response to detecting unauthorized access by the detection unit, the corresponding information processing apparatus into a decoy mode in which the detected unauthorized access is disconnected from a normal operation.
摘要:
A system includes a detection unit configured to detect unauthorized access to one or more information processing apparatuses that are virtually implemented by virtual machines executed by a computer; an authorized network configured to transfer authorized access to the one or more information processing apparatuses from an external network; a honeypot network configured to transfer unauthorized access to the information processing apparatuses from the external network; and a control unit configured to connect the information processing apparatuses for which no unauthorized access has been detected to the authorized network, and connect the information processing apparatuses for which unauthorized access has been detected to the honeypot network; wherein the control unit shifts, in response to detecting unauthorized access by the detection unit, the corresponding information processing apparatus into a decoy mode in which the detected unauthorized access is disconnected from a normal operation.