SILICON PHOTONICS RECEIVE PHASED ARRAY SENSORS

    公开(公告)号:US20190097725A1

    公开(公告)日:2019-03-28

    申请号:US16156087

    申请日:2018-10-10

    Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.

    Extended transit time array photodetector combiner (ETT-APC)

    公开(公告)号:US20210306075A1

    公开(公告)日:2021-09-30

    申请号:US17224580

    申请日:2021-04-07

    Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.

Patent Agency Ranking