Seam carving for image resizing
    1.
    发明授权
    Seam carving for image resizing 有权
    接缝雕刻图像调整大小

    公开(公告)号:US08213745B2

    公开(公告)日:2012-07-03

    申请号:US12576260

    申请日:2009-10-09

    IPC分类号: G06K9/32 G06K9/36

    CPC分类号: G06T3/0012

    摘要: A method for modifying an input digital image having input dimensions defined by a number of input rows and input columns to form an output digital image where the number of rows or columns is reduced by one, comprising an image energy map determined from the input image; determining a seam path responsive to the image energy map; imposing constraints on the seam path; and removing pixels along the seam path to modify the input digital image.

    摘要翻译: 一种用于修改输入数字图像的方法,该输入数字图像具有由多个输入行和输入列定义的输入尺寸,以形成输出数字图像,其中行或列的数量减1,包括从输入图像确定的图像能量图; 确定响应于所述图像能量图的接缝路径; 对缝线施加约束; 并沿着接缝路径去除像素以修改输入的数字图像。

    COMBINING SEAM CARVING AN IMAGE RESIZING
    2.
    发明申请
    COMBINING SEAM CARVING AN IMAGE RESIZING 有权
    组合缝合图像修复

    公开(公告)号:US20110091132A1

    公开(公告)日:2011-04-21

    申请号:US12582110

    申请日:2009-10-20

    IPC分类号: G06K9/32

    CPC分类号: G06T3/40 H04N1/393

    摘要: A method for resizing an input digital image to form an output digital image with an output aspect ratio, comprising: determining a number of rows or columns that need to be reduced from the input digital image; determining an image energy map for the input digital image; repeatedly determining a seam path responsive to the image energy map and removing pixels along the determined seam path to determine the output digital image, wherein the determined seam path satisfies a constraint that a directional image gradient is less than a gradient threshold for each pixel in the seam path, until either the determined number of rows or columns has been reduced or no valid seam path can be found; and cropping or scaling the output digital image to the output aspect ratio if the determined number of rows or columns was not reduced.

    摘要翻译: 一种用于调整输入数字图像的大小以形成具有输出宽高比的输出数字图像的方法,包括:从所述输入数字图像确定需要减少的行或列的数量; 确定所述输入数字图像的图像能量图; 重复地确定响应于图像能量图的接缝路径并且沿着确定的接缝路径去除像素以确定输出数字图像,其中所确定的接缝路径满足方向图像梯度小于梯度阈值的约束 接缝路径,直到确定的行数或列数已经减少或没有找到有效的接缝路径; 并且如果确定的行数或列数不减少,则将输出数字图像裁剪或缩放为输出宽高比。

    SEAM CARVING FOR IMAGE RESIZING
    3.
    发明申请
    SEAM CARVING FOR IMAGE RESIZING 有权
    SEAM CARVING FOR IMAGE RESIGING

    公开(公告)号:US20110085745A1

    公开(公告)日:2011-04-14

    申请号:US12576260

    申请日:2009-10-09

    IPC分类号: G06K9/32

    CPC分类号: G06T3/0012

    摘要: A method for modifying an input digital image having input dimensions defined by a number of input rows and input columns to form an output digital image where the number of rows or columns is reduced by one, comprising an image energy map determined from the input image; determining a seam path responsive to the image energy map; imposing constraints on the seam path; and removing pixels along the seam path to modify the input digital image.

    摘要翻译: 一种用于修改输入数字图像的方法,该输入数字图像具有由多个输入行和输入列定义的输入尺寸,以形成输出数字图像,其中行或列的数量减1,包括从输入图像确定的图像能量图; 确定响应于所述图像能量图的接缝路径; 对缝线施加约束; 并沿着接缝路径去除像素以修改输入的数字图像。

    Video key-frame extraction using bi-level sparsity
    4.
    发明授权
    Video key-frame extraction using bi-level sparsity 有权
    使用双级稀疏的视频关键帧提取

    公开(公告)号:US08467611B2

    公开(公告)日:2013-06-18

    申请号:US12964784

    申请日:2010-12-10

    IPC分类号: G06K9/46

    CPC分类号: G06K9/00744 G06K9/6249

    摘要: A method for identifying a set of key frames from a video sequence including a time sequence of video frames, the method executed at least in part by a data processor, comprising: selecting a set of video frames from the video sequence; identifying a plurality of visually homogeneous regions from each of the selected video frames; defining a set of basis functions, wherein each basis function is associated with a different visually homogeneous region; determining a feature vector for each of the selected video frames; representing each of the determined feature vectors as a sparse combination of the basis functions; for each of the determined feature vectors, determining a sparse set of video frames that contain the visually homogeneous regions corresponding to the basis functions included in the corresponding sparse combination of the basis functions; and analyzing the sparse sets of video frames to identify the set of key frames.

    摘要翻译: 一种用于从包括视频帧的时间序列的视频序列中识别一组关键帧的方法,所述方法至少部分地由数据处理器执行,所述方法包括:从所述视频序列中选择一组视频帧; 从所选择的视频帧中的每一个识别多个视觉上均匀的区域; 定义一组基函数,其中每个基函数与不同的视觉均匀区相关联; 确定每个所选视频帧的特征向量; 将每个确定的特征向量表示为基函数的稀疏组合; 对于每个所确定的特征向量,确定包含对应于基本函数的相应稀疏组合中包括的基本函数的视觉上均匀区域的视频帧的稀疏集合; 并分析视频帧的稀疏集合以识别该组关键帧。

    Scene boundary determination using sparsity-based model
    5.
    发明授权
    Scene boundary determination using sparsity-based model 有权
    使用基于稀疏性模型的场景边界确定

    公开(公告)号:US08976299B2

    公开(公告)日:2015-03-10

    申请号:US13413982

    申请日:2012-03-07

    摘要: A method for determining a scene boundary location dividing a first scene and a second scene in an input video sequence. The scene boundary location is determined responsive to a merit function value, which is a function of the candidate scene boundary location. The merit function value for a particular candidate scene boundary location is determined by representing the dynamic scene content for the input video frames before and after candidate scene boundary using sparse combinations of a set of basis functions, wherein the sparse combinations of the basis functions are determined by finding a sparse vector of weighting coefficients for each of the basis functions. The weighting coefficients determined for each of the input video frames are combined to determine the merit function value. The candidate scene boundary providing the smallest merit function value is designated to be the scene boundary location.

    摘要翻译: 一种用于确定在输入视频序列中划分第一场景和第二场景的场景边界位置的方法。 响应于作为候选场景边界位置的函数的优值函数值来确定场景边界位置。 通过使用一组基函数的稀疏组合表示候选场景边界之前和之后的输入视频帧的动态场景内容来确定特定候选场景边界位置的优值函数值,其中确定基函数的稀疏组合 通过找出每个基本函数的加权系数的稀疏矢量。 为每个输入视频帧确定的加权系数被组合以确定优值函数值。 提供最小优值函数值的候选场景边界被指定为场景边界位置。

    SCENE BOUNDARY DETERMINATION USING SPARSITY-BASED MODEL
    6.
    发明申请
    SCENE BOUNDARY DETERMINATION USING SPARSITY-BASED MODEL 有权
    使用基于SPARSITY的模型的场景边界确定

    公开(公告)号:US20130235275A1

    公开(公告)日:2013-09-12

    申请号:US13413982

    申请日:2012-03-07

    IPC分类号: H04N5/14

    摘要: A method for determining a scene boundary location dividing a first scene and a second scene in an input video sequence. The scene boundary location is determined responsive to a merit function value, which is a function of the candidate scene boundary location. The merit function value for a particular candidate scene boundary location is determined by representing the dynamic scene content for the input video frames before and after candidate scene boundary using sparse combinations of a set of basis functions, wherein the sparse combinations of the basis functions are determined by finding a sparse vector of weighting coefficients for each of the basis functions. The weighting coefficients determined for each of the input video frames are combined to determine the merit function value. The candidate scene boundary providing the smallest merit function value is designated to be the scene boundary location.

    摘要翻译: 一种用于确定在输入视频序列中划分第一场景和第二场景的场景边界位置的方法。 响应于作为候选场景边界位置的函数的优值函数值确定场景边界位置。 通过使用一组基函数的稀疏组合表示候选场景边界之前和之后的输入视频帧的动态场景内容来确定特定候选场景边界位置的优值函数值,其中确定基函数的稀疏组合 通过找出每个基本函数的加权系数的稀疏矢量。 为每个输入视频帧确定的加权系数被组合以确定优值函数值。 提供最小优值函数值的候选场景边界被指定为场景边界位置。

    Video representation using a sparsity-based model
    7.
    发明授权
    Video representation using a sparsity-based model 有权
    使用基于稀疏模型的视频表示

    公开(公告)号:US08982958B2

    公开(公告)日:2015-03-17

    申请号:US13413962

    申请日:2012-03-07

    摘要: A method for representing a video sequence including a time sequence of input video frames, the input video frames including some common scene content that is common to all of the input video frames and some dynamic scene content that changes between at least some of the input video frames. Affine transform are determined to align the common scene content in the input video frames. A common video frame including the common scene content is determined by forming a sparse combination of a first basis functions. A dynamic video frame is determined for each input video frame by forming a sparse combination of a second basis functions, wherein the dynamic video frames can be combined with the respective affine transforms and the common video frame to provide reconstructed video frames.

    摘要翻译: 一种用于表示包括输入视频帧的时间序列的视频序列的方法,所述输入视频帧包括所有输入视频帧共同的一些常见场景内容和在至少一些输入视频之间改变的一些动态场景内容 框架。 确定仿射变换以使输入视频帧中的公共场景内容对齐。 通过形成第一基本函数的稀疏组合来确定包括公共场景内容的公共视频帧。 通过形成第二基本函数的稀疏组合,为每个输入视频帧确定动态视频帧,其中动态视频帧可以与各自的仿射变换和公共视频帧组合以提供重构的视频帧。

    VIDEO REPRESENTATION USING A SPARSITY-BASED MODEL
    8.
    发明申请
    VIDEO REPRESENTATION USING A SPARSITY-BASED MODEL 有权
    使用基于SPARSITY的模型的视频表示

    公开(公告)号:US20130235939A1

    公开(公告)日:2013-09-12

    申请号:US13413962

    申请日:2012-03-07

    IPC分类号: H04N7/30

    摘要: A method for representing a video sequence including a time sequence of input video frames, the input video frames including some common scene content that is common to all of the input video frames and some dynamic scene content that changes between at least some of the input video frames. Affine transform are determined to align the common scene content in the input video frames. A common video frame including the common scene content is determined by forming a sparse combination of a first basis functions. A dynamic video frame is determined for each input video frame by forming a sparse combination of a second basis functions, wherein the dynamic video frames can be combined with the respective affine transforms and the common video frame to provide reconstructed video frames.

    摘要翻译: 一种用于表示包括输入视频帧的时间序列的视频序列的方法,所述输入视频帧包括所有输入视频帧共同的一些常见场景内容和在至少一些输入视频之间改变的一些动态场景内容 框架。 确定仿射变换以使输入视频帧中的公共场景内容对齐。 通过形成第一基本函数的稀疏组合来确定包括公共场景内容的公共视频帧。 通过形成第二基本函数的稀疏组合,为每个输入视频帧确定动态视频帧,其中动态视频帧可以与各自的仿射变换和公共视频帧组合以提供重构的视频帧。

    Video summarization using sparse basis function combination
    9.
    发明授权
    Video summarization using sparse basis function combination 有权
    视频摘要使用稀疏基函数组合

    公开(公告)号:US08467610B2

    公开(公告)日:2013-06-18

    申请号:US12908022

    申请日:2010-10-20

    IPC分类号: G06K9/46

    摘要: A method for determining a video summary from a video sequence including a time sequence of video frames, comprising: defining a global feature vector representing the entire video sequence; selecting a plurality of subsets of the video frames; extracting a frame feature vector for each video frame in the selected subsets of video frames; defining a set of basis functions, wherein each basis function is associated with the frame feature vectors for the video frames in a particular subset of video frames; using a data processor to automatically determine a sparse combination of the basis functions representing the global feature vector; determining a summary set of video frames responsive to the sparse combination of the basis functions; and forming the video summary responsive to the summary set of video frames.

    摘要翻译: 一种用于从包括视频帧的时间序列的视频序列确定视频摘要的方法,包括:定义表示整个视频序列的全局特征向量; 选择所述视频帧的多个子集; 提取所选择的视频帧子集中的每个视频帧的帧特征向量; 定义一组基函数,其中每个基函数与视频帧的特定子集中的视频帧的帧特征向量相关联; 使用数据处理器自动确定表示全局特征向量的基函数的稀疏组合; 响应于所述基本功能的稀疏组合来确定视频帧的汇总集合; 以及响应于所述视频帧的汇总而形成所述视频摘要。

    Video key-frame extraction using bi-level sparsity
    10.
    发明申请
    Video key-frame extraction using bi-level sparsity 有权
    使用双级稀疏的视频关键帧提取

    公开(公告)号:US20120148157A1

    公开(公告)日:2012-06-14

    申请号:US12964784

    申请日:2010-12-10

    IPC分类号: G06K9/34 G06K9/48

    CPC分类号: G06K9/00744 G06K9/6249

    摘要: A method for identifying a set of key frames from a video sequence including a time sequence of video frames, the method executed at least in part by a data processor, comprising: selecting a set of video frames from the video sequence; identifying a plurality of visually homogeneous regions from each of the selected video frames; defining a set of basis functions, wherein each basis function is associated with a different visually homogeneous region; determining a feature vector for each of the selected video frames; representing each of the determined feature vectors as a sparse combination of the basis functions; for each of the determined feature vectors, determining a sparse set of video frames that contain the visually homogeneous regions corresponding to the basis functions included in the corresponding sparse combination of the basis functions; and analyzing the sparse sets of video frames to identify the set of key frames.

    摘要翻译: 一种用于从包括视频帧的时间序列的视频序列中识别一组关键帧的方法,所述方法至少部分由数据处理器执行,包括:从视频序列中选择一组视频帧; 从所选择的视频帧中的每一个识别多个视觉上均匀的区域; 定义一组基函数,其中每个基函数与不同的视觉均匀区相关联; 确定每个所选视频帧的特征向量; 将每个确定的特征向量表示为基函数的稀疏组合; 对于每个所确定的特征向量,确定包含对应于基本函数的相应稀疏组合中包括的基本函数的视觉上均匀区域的视频帧的稀疏集合; 并分析视频帧的稀疏集合以识别该组关键帧。