Abstract:
A solid electrolytic capacitor having grooves provided in a valve-acting metal substrate that includes a porous surface part and a non-porous body part, the bottoms of the grooves being non-porous. The valve-acting metal substrate is divided into a plurality of unit regions by the grooves, and define cathode layer formation parts in the porous surface parts for each unit region. A dielectric layer covers the surfaces of the cathode layer formation parts of the valve-acting metal substrate and the grooves between the cathode layer formation parts. A solid electrolyte layer and a cathode extraction layer cover the surface of the dielectric layer, thereby providing a sheet in which a plurality of solid electrolytic capacitor elements are prepared integrally with the grooves interposed therebetween. The sheet is cut at the grooves, and a dielectric layer is formed on the cut surfaces located around the cathode layer formation parts.
Abstract:
A solid electrolytic capacitor that includes a capacitor element that having an anode with a core portion and a porous portion, a dielectric layer covering the porous portion, and a cathode including a solid electrolyte layer covering at least part of the dielectric layer; an exterior body that encloses the capacitor element so as to expose an end of the anode; a first external electrode connected to the cathode; and a second external electrode connected to the end of the anode. The thickness of the porous portion at the end of the anode that is exposed from the exterior member is smaller than the thickness of the porous portion in a region covered by the cathode.
Abstract:
A solid electrolytic capacitor that includes a positive external electrode electrically connected to a core part of a valve-acting metal base included in a capacitor element, a first conductive layer in direct contact with the core part of the valve-acting metal base and covering one end surface of the valve-acting metal base and at least a part of an exterior located around the end surface.
Abstract:
A solid electrolytic capacitor having grooves provided in a valve-acting metal substrate that includes a porous surface part and a non-porous body part, the bottoms of the grooves being non-porous. The valve-acting metal substrate is divided into a plurality of unit regions by the grooves, and define cathode layer formation parts in the porous surface parts for each unit region. A dielectric layer covers the surfaces of the cathode layer formation parts of the valve-acting metal substrate and the grooves between the cathode layer formation parts. A solid electrolyte layer and a cathode extraction layer cover the surface of the dielectric layer, thereby providing a sheet in which a plurality of solid electrolytic capacitor elements are prepared integrally with the grooves interposed therebetween. The sheet is cut at the grooves, and a dielectric layer is formed on the cut surfaces located around the cathode layer formation parts.
Abstract:
A solid electrolytic capacitor that includes a capacitor element that having an anode with a core portion and a porous portion, a dielectric layer covering the porous portion, and a cathode including a solid electrolyte layer covering at least part of the dielectric layer; an exterior body that encloses the capacitor element so as to expose an end of the anode; a first external electrode connected to the cathode; and a second external electrode connected to the end of the anode. The thickness of the porous portion at the end of the anode that is exposed from the exterior member is smaller than the thickness of the porous portion in a region covered by the cathode.
Abstract:
A solid electrolytic capacitor having grooves provided in a valve-acting metal substrate that includes a porous surface part and a non-porous body part, the bottoms of the grooves being non-porous. The valve-acting metal substrate is divided into a plurality of unit regions by the grooves, and define cathode layer formation parts in the porous surface parts for each unit region. A dielectric layer covers the surfaces of the cathode layer formation parts of the valve-acting metal substrate and the grooves between the cathode layer formation parts. A solid electrolyte layer and a cathode extraction layer cover the surface of the dielectric layer, thereby providing a sheet in which a plurality of solid electrolytic capacitor elements are prepared integrally with the grooves interposed therebetween. The sheet is cut at the grooves, and a dielectric layer is formed on the cut surfaces located around the cathode layer formation parts.
Abstract:
A solid electrolytic capacitor that includes a positive external electrode electrically connected to a core part of a valve-acting metal base included in a capacitor element, a first conductive layer in direct contact with the core part of the valve-acting metal base and covering one end surface of the valve-acting metal base and at least a part of an exterior located around the end surface.
Abstract:
A solid electrolytic capacitor having grooves provided in a valve-acting metal substrate that includes a porous surface part and a non-porous body part, the bottoms of the grooves being non-porous. The valve-acting metal substrate is divided into a plurality of unit regions by the grooves, and define cathode layer formation parts in the porous surface parts for each unit region. A dielectric layer covers the surfaces of the cathode layer formation parts of the valve-acting metal substrate and the grooves between the cathode layer formation parts. A solid electrolyte layer and a cathode extraction layer cover the surface of the dielectric layer, thereby providing a sheet in which a plurality of solid electrolytic capacitor elements are prepared integrally with the grooves interposed therebetween. The sheet is cut at the grooves, and a dielectric layer is formed on the cut surfaces located around the cathode layer formation parts.