Abstract:
An inductor component includes an annular core; and a first coil and a second coil that are wound around the core so that winding axes thereof are parallel to each other. The first coil and the second coil each include a conductor portion and a coating that covers the conductor portion. The inductor component further includes a first insulating resin that covers at least a part of the conductor portion of the first coil, the part being exposed from the coating; and a second insulating resin that covers at least a part of the conductor portion of the second coil, the part being exposed from the coating. The first insulating resin and the second insulating resin are not connected but separated in a space between surfaces of the first coil and the second coil that face each other.
Abstract:
A common mode choke coil includes a core, and first and second coils opposed to each other and wound on the core. The core can have a square shape, or an elongated shape having a long axis and a short axis when viewed in a direction along a central axis of the core. Each of the first and second coils is a single-layer coil. An area of a cross-section of the core taken perpendicular to a circumferential direction of the core is constant in the circumferential direction of the core. The cross-section of the core has a quadrilateral shape.
Abstract:
A common mode choke coil includes a core, and first and second coils opposed to each other and wound on the core. The core can have a square shape, or an elongated shape having a long axis and a short axis when viewed in a direction along a central axis of the core. Each of the first and second coils is a single-layer coil. An area of a cross-section of the core taken perpendicular to a circumferential direction of the core is constant in the circumferential direction of the core. The cross-section of the core has a quadrilateral shape.
Abstract:
An inductor component and a method for manufacturing an inductor component that enables miniaturization of the inductor component. An inductor component includes an annular core; and a coil including a plurality of pin members and wound on the core with neighboring pin members connected to each other. A first pin member and a second pin member both adjacent to each other have a welded part in which an end face of an end part of the first pin member and a peripheral surface of an end part of the second pin member are welded to each other. The welded part is not provided on an outer side edge of the second pin member as viewed from a direction orthogonal to a first plane containing a center line of the end part of the first pin member and a center line of the end part of the second pin member.
Abstract:
A manufacturing method that is capable of forming an electrode on any part of a surface of a sintered ceramic body in accordance with a simple approach, and a ceramic electronic component manufactured by the method. The method for manufacturing a ceramic electronic component includes steps of preparing a sintered ceramic body containing a metal oxide, irradiating an electrode formation region on a surface of the ceramic body with a laser to partially lower resistance of the ceramic body, thereby forming a low-resistance portion, and subjecting the ceramic body to plating to deposit a plated metal serving as an electrode on the low-resistance portion, and growing the plated metal to extend over the entire electrode formation region.
Abstract:
An inductor component includes a core having an annular shape; an insulating member that covers a portion of the core; a coil wound around the core and the insulating member; and a buffer member that is elastic. The core has a first face, a second face that crosses the first face, and a third face that faces the second face and crosses the first face. The insulating member is provided to cover the first face, a portion of the second face, and a portion of the third face. The core and the insulating member are bonded to each other with the buffer member interposed therebetween.
Abstract:
An inductor component and a method for manufacturing an inductor component that enables the inductor component to be miniaturized. An inductor component includes an annular core; and a coil including a plurality of pin members and wound on the core with neighboring pin members connected to each other. A first pin member and a second pin member both adjacent to each other have a welded part in which an end part of the first pin member and an end part of the second pin member are welded to each other, and the end part of the second pin member has a constricted part whose width is narrower.
Abstract:
An inductor component includes an element body including a magnetic layer containing a resin and a magnetic powder; a coil wiring line arranged inside the element body; and an insulating coating film covering the coil wiring line and not including a magnetic material. In a cross section perpendicular to an extension direction of the coil wiring line, a top surface thickness of a part of the insulating coating film covering the top surface of the coil wiring line and a side surface thickness of parts of the insulating coating film covering side surfaces of the coil wiring line are less than or equal to 10 μm, and a corner thickness of parts of the insulating coating film that cover corners of the coil wiring line interposed between the top surface and the side surfaces is at least half of the top surface thickness and/or the side surface thickness.
Abstract:
An inductor component comprising an insulating layer containing no magnetic substance, a spiral wiring formed on a first principal surface of the insulating layer and wound on the first principal surface, and a magnetic layer in contact with at least a portion of the spiral wiring.
Abstract:
A coil component includes a core and a coil that is wound around the core. The coil includes a plurality of pin members that are joined together.