Abstract:
In a laminated inductor element, a magnetic ferrite layer sandwiched between two conductor patterns is thinner than other magnetic ferrite layers. Therefore, a crack occurs in the magnetic ferrite layer due to firing. As a result of the occurrence of this crack, a stress applied to each layer is relaxed, and it becomes possible to avoid warpage, a crack, or the like. In addition, in the laminated type inductor element, the two conductor patterns are electrically connected by two via holes, and subjected to a same potential. Since the two conductor patterns correspond to a same wiring pattern and a coil of coil conductor is defined by the two conductor patterns, even if upper and lower coil conductors are electrically in contact with each other due to the crack, the two conductor patterns are not put into a short-circuited state.
Abstract:
A composite electronic component with a built-in coil is provided which can be produced inexpensively, which can effectively increase insulating reliability, and which has the antistatic function. Coil wirings are disposed inside a sintered body that is formed by stacking a plurality of ferrite layers, which are fired as an integral unit. Voltage nonlinear members are incorporated in the sintered body at a different height position from those of the coil wirings. First inner electrodes and second inner electrodes are disposed in opposing relation with the voltage nonlinear members interposed therebetween. A magnetic circuit forming portion is constituted by a part of the ferrite layers and the coil wirings in a portion in which the coil wirings are arranged, and an antistatic portion is constituted in a portion in which the remaining ferrite layers, the voltage nonlinear members, and the first and second inner electrodes are arranged.
Abstract:
A highly reliable ESD protection device that prevents failure of discharge and variation of a discharge start voltage even when protection from static electricity is repeatedly performed includes a cavity provided in a ceramic multilayer substrate. First and second discharge electrodes are provided in the ceramic multilayer substrate and face each other across a gap. A tip of the first discharge electrode and a tip of the second discharge electrode are positioned at edges of the cavity or at positions receded from the edges.